231 FS 2007 q1 Outline Solution. ${ }^{1}$

12 February 2006
1(a) Ok, so it ins't so clear why its a good thing to do, but follow the instructions and do the change of variable: $x^{2}+y^{2}=\left(u^{2}+v^{2}\right) / 2$ either by solving for x and y or just by staring at it. Now, the Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{4}\left\|\begin{array}{cc}
1 & 1 \tag{1}\\
1 & -1
\end{array}\right\|=\frac{1}{2}
$$

and under the change of coördinates

$$
\begin{align*}
(0,0) & \rightarrow(0,0) \\
(1,1) & \rightarrow(2,0) \\
(2,0) & \rightarrow(2,2) \\
(1,-1) & \rightarrow(0,2) \tag{2}
\end{align*}
$$

So, now I get it, the coördinate change makes the boundaries easier

$$
\begin{equation*}
\iint_{R}\left(x^{2}+y^{2}\right) d x d y=\frac{1}{2} \int_{0}^{2} d u \int_{0}^{2} d v\left(u^{2}+v^{2}\right)=\frac{1}{2} \int_{0}^{2} d u\left(2 u^{2}+\frac{8}{3}\right)=\frac{8}{3} \tag{3}
\end{equation*}
$$

1(b) So lots of repitition here, that was mostly a test of nerve, yes the x and y integrals are the same, being asked both makes you think they should be different, but they aren't. The area first, convert to polars, remembering the r from the Jacobian.

$$
\begin{equation*}
A=\int_{0}^{\pi / 2} d \theta \int_{0}^{1} d r r=\frac{\pi}{4} \tag{4}
\end{equation*}
$$

The centroids require we work out the first moments, in some made up notation:

$$
\begin{equation*}
<x>=\int_{0}^{\pi / 2} d \theta \int_{0}^{1} d r x r=\int_{0}^{\pi / 2} d \theta \int_{0}^{1} d r r^{2} \cos \theta=\frac{1}{3} \tag{5}
\end{equation*}
$$

where the $1 / 3$ comes from the r integral and the one from the θ, and

$$
\begin{equation*}
<y>=\int_{0}^{\pi / 2} d \theta \int_{0}^{1} d r y r=\int_{0}^{\pi / 2} d \theta \int_{0}^{1} d r r^{2} \sin \theta=\frac{1}{3} \tag{6}
\end{equation*}
$$

Hence $\bar{x}=\bar{y}=4 / 3 \pi$. Finally, the moments of inertia, I know the symbols $I_{x x}$ and $I_{y y}$ are completely misused here, that was corrected on the day, let me call them $\langle x x\rangle$ and $<y y>$ instead.

$$
\begin{equation*}
<x x>=\int_{0}^{\pi / 2} d \theta \int_{0}^{1} d r x^{2} r=\int_{0}^{\pi / 2} d \theta \int_{0}^{1} d r r^{3} \cos ^{2} \theta=\frac{1}{4} \int_{0}^{\pi / 2} \cos ^{2} \theta=\frac{\pi}{16} \tag{7}
\end{equation*}
$$

using the usual $\cos ^{2} \theta=(1+\cos 2 \theta) / 2 .<y y>$ is the same.

[^0]
[^0]: ${ }^{1}$ Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/ ${ }^{\sim}$ houghton/231

