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1(a) Ok, so it ins’t so clear why its a good thing to do, but follow the instructions and
do the change of variable: x2 + y2 = (u2 + v2)/2 either by solving for x and y or just by
staring at it. Now, the Jacobian is
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and under the change of coördinates

(0, 0) → (0, 0)
(1, 1) → (2, 0)
(2, 0) → (2, 2)

(1,−1) → (0, 2) (2)

So, now I get it, the coördinate change makes the boundaries easier
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1(b) So lots of repitition here, that was mostly a test of nerve, yes the x and y integrals
are the same, being asked both makes you think they should be different, but they aren’t.
The area first, convert to polars, remembering the r from the Jacobian.
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The centroids require we work out the first moments, in some made up notation:
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where the 1/3 comes from the r integral and the one from the θ, and
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Hence x̄ = ȳ = 4/3π. Finally, the moments of inertia, I know the symbols Ixx and Iyy

are completely misused here, that was corrected on the day, let me call them < xx > and
< yy > instead.
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using the usual cos2 θ = (1 + cos 2θ)/2. < yy > is the same.
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