231 annual 2007 q9 outline solution

9 By separating variables, solve the two-dimensional Laplace equation for $\Phi(x, y)$ with what are called Hadamard conditions

$$
\begin{aligned}
\Phi(0, y) & =0 \\
\frac{\partial}{\partial x} \Phi(0, y) & =\frac{1}{n} \sin n y .
\end{aligned}
$$

Solution:This is a quick outline, I will skip over steps that are in the notes. So seperating the variables $\Phi(x, y)=X(x) Y(y)$ gives

$$
\begin{equation*}
X^{\prime \prime} Y+X Y^{\prime \prime}=0 \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{X^{\prime \prime}}{X}=-\frac{Y^{\prime \prime}}{Y} \tag{2}
\end{equation*}
$$

Since the left and right hand sides are functions of different independent variables, they must be equal to a constant, say E giving

$$
\begin{align*}
X^{\prime \prime} & =E X \\
Y^{\prime \prime} & =-E Y \tag{3}
\end{align*}
$$

which each have solutions in the three classes as in the notes. Now we need to apply the boundary conditions,

$$
\begin{align*}
& \Phi(0, y)=X(0) Y(y)=0 \\
& \Phi(0, y)=X^{\prime}(0) Y(y)=\frac{1}{n} \sin n y \tag{4}
\end{align*}
$$

so we need $X(0)=0$ and $X^{\prime}(0)=$ constant. If this holds then we have

$$
\begin{equation*}
Y=\frac{A}{n} \sin n y \tag{5}
\end{equation*}
$$

so $E=n^{2}$ and hence

$$
\begin{equation*}
X=B \sinh n x \tag{6}
\end{equation*}
$$

where I have put substituted

$$
\begin{equation*}
X=C_{1} e^{n x}+C_{2} e^{-n x} \tag{7}
\end{equation*}
$$

into the conditions on X and put the two exponentials together to get the $\sinh n x$. Now, putting this back together we get

$$
\begin{equation*}
\Phi(x, y)=\frac{C}{n} \sinh n x \sin n x \tag{8}
\end{equation*}
$$

