Annual exam 2007: solution to question 5

5 (a) The Fourier series relies on the orthogonality of the sine and cosine functions: as an example, show

$$
\int_{-\pi}^{\pi} \sin n x \cos m x d x=0
$$

for integers n and m.
(b) Show that the Fourier series of the function $f(x)$ with period 2π defined by

$$
\begin{aligned}
f(t) & =x^{2}+x \\
\text { for }-\pi<t<\pi & \text { and } f(x+2 \pi)
\end{aligned}=f(x) \text { is } \quad \begin{aligned}
\frac{1}{3} \pi^{2}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \cos n x-\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n} \sin n x
\end{aligned}
$$

(c) What is

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

Soln. The orthgonality of the sines and cosines can be demonstrate using trig idenities, or by changing to complex exponentials, here I will use the former method, with $n \neq m$ and n and m positive:

$$
\begin{align*}
\int_{-\pi}^{\pi} \sin n x \cos m x d x= & \frac{1}{2} \int_{-\pi}^{\pi}[\sin (n+m) x+\sin (n-m) x] d x \\
= & \left.-\frac{1}{2(n+m)} \cos (n+m) x\right]_{-\pi}^{\pi} \\
& \left.-\frac{1}{2(n-m)} \cos (n-m) x\right]_{-\pi}^{\pi} \\
= & 0 \tag{1}
\end{align*}
$$

Next, consider the function f;

$$
\begin{equation*}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x^{2}+x\right) d x=\frac{2}{3} \pi^{2} \tag{2}
\end{equation*}
$$

and

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x^{2}+x\right) \cos n x d x
$$

$$
\begin{align*}
& =\frac{1}{\pi}\left[\frac{x^{2}}{n} \sin n x+\frac{2 x}{n^{2}} \cos n x-\frac{2}{n^{3}} \sin n x+\frac{1}{n^{2}} \cos n x\right]_{-\pi}^{\pi} \\
& =\frac{4}{n^{2}} \cos n \pi \\
& =\frac{4}{n^{2}}(-1)^{n} \tag{3}
\end{align*}
$$

where we have integrated by parts. Similarily

$$
\begin{equation*}
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(x^{2}+x\right) \sin n x d x=-\frac{2}{n}(-1)^{n} \tag{4}
\end{equation*}
$$

Of course, it is easier to do this problem if you split it into the x part, which only has a sine series and the x^{2} part which only has a cosine series. Finally, if $x=\pi$ we expect the righthand side to interpolate the discontinuity,

$$
\begin{align*}
& \lim _{x \rightarrow \pi-}=\pi^{2}+\pi \\
& \lim _{x \rightarrow \pi+}=\pi^{2}-\pi \tag{5}
\end{align*}
$$

so

$$
\begin{equation*}
\pi=\frac{1}{3} \pi^{2}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \cos n \pi=\frac{1}{3} \pi^{2}+\sum_{n=1}^{\infty} \frac{4}{n^{2}}(-1)^{n} \tag{6}
\end{equation*}
$$

giving

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{1}{6} \pi^{2} \tag{7}
\end{equation*}
$$

where the subtle point is to use the $\cos n \pi$ to get rid of the $(-1)^{n}$ and then to remember that a Fourier series interpolates across a discontinuity.

