Annual exam 2007: solution to question 5

5 (a) The Fourier series relies on the orthogonality of the sine and cosine
functions: as an example, show

™
/ sin nx cosmaxdr = 0
—T

for integers n and m.

(b) Show that the Fourier series of the function f(x) with period 27
defined by
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Soln. The orthgonality of the sines and cosines can be demonstrate using trig
idenities, or by changing to complex exponentials, here I will use the former
method, with n # m and n and m positive:
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Next, consider the function f;
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where we have integrated by parts. Similarily
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Of course, it is easier to do this problem if you split it into the x part, which
only has a sine series and the x? part which only has a cosine series. Finally,
if x = 7 we expect the righthand side to interpolate the discontinuity,
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where the subtle point is to use the cosnm to get rid of the (—1)" and then
to remember that a Fourier series interpolates across a discontinuity.



