Annual exam 2007: solution to question 5

5 (a) The Fourier series relies on the orthogonality of the sine and cosine

functions: as an example, show
us
/ sin nx cosmadr = 0
for integers n and m.
(b) Show that the Fourier series of the function f(z) with period 27

defined by
f)y=a*+z
for —m <t <mand f(z+27) = f(z) is
1 > 4 > 2
ng + 2 ;(71)" cosnx — T; E(fl)" sin nx

(c) What is

Soln. The orthgonality of the sines and cosines can be demonstrate using trig
idenities, or by changing to complex exponentials, here I will use the former
method, with n # m and n and m positive:
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Next, consider the function f;
1 1 /= 2
a = /77r flx)dx = - ‘/4(1;2 +x)dr = §7r2 (2)
and
1 1,
a, = 7/ f(z) cosnzdr = f‘/ (2* + x) cosnadx
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where we have integrated by parts. Similarily

1 . 17 . 2
b, = 7/ f(z)sinnzdx = 7/ (2* + x) sinnzde = —=(=1)"  (4)
wJr T Jr n
Of course, it is easier to do this problem if you split it into the  part, which
only has a sine series and the 22 part which only has a cosine series. Finally,
if = 7 we expect the righthand side to interpolate the discontinuity,
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giving
1 1,
— 7
n;nz i (7)

where the subtle point is to use the cosnm to get rid of the (—1)" and then
to remember that a Fourier series interpolates across a discontinuity.



