Outline solution to 231 annual exam 2007 q1

1. (a) Evaluate

$$
\int_{0}^{2} d x \int_{x^{2}}^{x} d y y^{2} x
$$

and

$$
\int_{0}^{\pi} d y \int_{0}^{\cos y} d x x \sin y
$$

(b) By reversing the order of integration, or otherwise, evaluate

$$
\int_{0}^{2} d y \int_{y / 2}^{1} d x e^{x^{2}}
$$

(c) Use double integration

$$
\text { Volume of } D=\iint_{D} d x d y d z
$$

to find the volume of the solid bound by the cylinder $x^{2}+y^{2}=9$ and the planes $z=0$ and $z=3-x$.

Solution:For 1(a) the integral are just integrated directly as they are written:

$$
\begin{align*}
\int_{0}^{2} d x \int_{x^{2}}^{x} d y y^{2} x & \left.=\int_{0}^{2} d x \frac{1}{3} y^{3} x\right]_{x^{2}}^{x} \\
& =\int_{0}^{2} d x \frac{1}{3}\left(x^{4}-x^{7}\right) \\
& =\left(\frac{1}{15} x^{5}-\frac{1}{24} x^{8}\right)_{0}^{2} \\
& =\frac{32}{3}\left(\frac{1}{5}-1\right)=-\frac{256}{15} \tag{1}
\end{align*}
$$

and

$$
\begin{equation*}
\int_{0}^{\pi} d y \int_{0}^{\cos y} d x x \sin y=\frac{1}{2} \int_{0}^{\pi} d y \cos ^{2} y \sin y \tag{2}
\end{equation*}
$$

and now let $u=\cos y$ so $d u=-\sin y d y$ and $y=\pi$ gives $u=-1$ and $y=0$ gives $u=1$, so

$$
\begin{equation*}
\left.\int_{0}^{\pi} d y \int_{0}^{\cos y} d x x \sin y=\frac{1}{2} \int_{-1}^{1} u^{2} d u=\frac{1}{6} u^{3}\right]_{-1}^{1}=\frac{1}{3} \tag{3}
\end{equation*}
$$

Obviously, this could also have been done using a trignometric identity.

For (b) the trick bit is reversing the order of integration. In the x direction the integration region goes from the line $y=2 x$ to $x=1$ and then in the y-direction, from zero to two; see the figure. Now, going in the y direction first, we have y going from zero to $2 x$ and x then goes from zero to one; hence

$$
\begin{equation*}
\int_{0}^{2} d y \int_{y / 2}^{1} d x e^{x^{2}}=\int_{0}^{1} d x \int_{0}^{2 x} d x e^{x^{2}}=\int_{0}^{1} d x 2 x e^{x^{2}}=e-1 \tag{4}
\end{equation*}
$$

where we have used the u substitution $u=x^{2}$ to do the x integral.

Finally, for part (c) the thing is to use cylindrical polars. In cylindricals $x=\rho \cos \phi$ so the top of the solid is given by $z=3-\rho \cos \phi$ and hence, integrating one to get the volume

$$
\begin{align*}
V & =\int_{0}^{2 \pi} d \phi \int_{0}^{3} d \rho \rho \int_{0}^{3-\rho \cos \phi} d z=\int_{0}^{2 \pi} d \phi \int_{0}^{3} d \rho \rho(3-\rho \cos \phi) \\
& =\int_{0}^{2 \pi} d \phi\left(\frac{3}{2} \rho^{2}-\frac{1}{3} \rho^{3} \cos \phi\right)_{0}^{3} \\
& =\int_{0}^{2 \pi} d \phi\left(\frac{27}{2}-9 \cos \phi\right)=27 \pi \tag{5}
\end{align*}
$$

