The first 6 questions of the 2006 annual
 exam.

1. (a) The region R in the $x y$-plane is given by

$$
R=\left\{(x, y): x^{2} \leq y \leq 4\right\}
$$

Sketch the region R and evaluate

$$
\iint_{R} \exp y^{3 / 2} d x d y
$$

(b) The region R in the $x y$-plane is given by

$$
R=\left\{(x, y): x^{2}+y^{2} \leq 4, x \geq 1, y \geq 0\right\}
$$

Convert the integral

$$
\iint_{R} \frac{1}{\sqrt{x^{2}+y^{2}-1}} d x d y
$$

into polar coördinates and evaluate it.
Hint: Sketch the region R, describe the left boundary in polar coördinates - find r as a function of θ along this part of the boundary. In evaluating the resulting double integral the following standard integral may be useful

$$
\int \tan \theta d \theta=-\log |\cos \theta|+C
$$

2. Define a conservative vector field and show a vector field is conservative if and only if its line integral is path independent. Evaluate the integral

$$
I=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{C}\left(3 x^{2} d x+2 y z d y+y^{2} d z\right.
$$

from $(0,1,2)$ to $(1,-1,7)$ by showing that \mathbf{F} has a potential.
3. Show that for all integers m and n

$$
\int_{-\pi}^{\pi} \sin n x \cos m x d x=0
$$

Outline how the formulae for the Fourier coefficients are derived. Calculate the Fourier series of the function

$$
f(x)=x
$$

for $|x| \leq \pi$ and $f(x+2 \pi)=f(x)$.
4. (a) Find the Fourier transform of the function

$$
f(x)= \begin{cases}b & |x|<a \\ 0 & |x| \geq a\end{cases}
$$

where a is a positive constant and b is a constant.
(b) Find the Fourier transform of the function

$$
f(x)=e^{-a|x|}
$$

where a is again a positive constant.
5. (a) Find a particular solution to

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=e^{-2 x} \cos 2 x
$$

(b) Verify that $y(x)=1$ is a particular solution to

$$
\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d t}+4 y=4
$$

and find solutions satifying the boundary condition $y(0)=y^{\prime}(0)=$ 0 where the dash denotes differenciation with respect to x.
6. Use the method of Frobenius to obtain a series solution to

$$
8 x^{2} y^{\prime \prime}+10 x y^{\prime}+(x-1) y=0
$$

which is valid near $x=0$. If the solution is non-singular at $x=0$ and equal to one when $x=1$ write down a solution which is accurate to within one percent when $x<1$. Hint: the indicial equation leads to a solution which is non-singular at $x=0$, write down the first two terms of this solution and evaluate it at $x=1$.

