
Note IV.112 13 May 2007

Part IV: Partial Differential Equations

A partial differential equation is a differential equation involving derivatives of more than
one independent variable.

Some linear PDEs involving a scalar field φ

These equations are often known as the equations of mathematical physics since they
are all important in physics and where all studied first because of their physical importance.
However, they are now equally important in mathematics.

• Laplace’s equation:
∇

2φ = 0 (1)

• Poisson’s equation:
∇

2φ = ρ (2)

where ρ is some scalar field usually called a source term

• The Helmholtz equation:
(∇2 + k2)φ = 0 (3)

and the ’wrong sign’ Helmholtz equation:

(∇2
− k2)φ = 0 (4)

where k is a real constant

• The Heat or diffusion equation:

∇
2φ = D

∂φ

∂t
(5)

where D a constant and φ = φ(r, t) is time-dependent.

• The wave equation:

∇
2φ−

1

c2
∂2φ

∂t2
= 0 (6)

where c is the speed of wave propagation.

All of these equation involve the Laplacian:

△ = ∇
2 = ∇.∇ = div grad =

d2

dx2
+

d2

dy2
+

d2

dz2
(7)

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Substantially based on lecture notes taken by John Kearney
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Heat/Diffusion Equation

Imagine some material where the temperature is not constant but with no sources, or sinks,
of heat. Temperature is a scalar field φ(r, t). Heat current j(r, t) is a vector field such that
energy flux across an oriented surface S (Picture IV.1.1) is the surface integral

∫

S
j(r, t)dA

Let S be a closed, static, surface. Heat flux out, Φ, of S is given by

Φ =

∫

S

j(r, t)dA = − rate of change of energy in D = −α
∂

∂t

∫

D

φ(r, t)dV

= −α

∫

D

∂φ

∂t
(r, t)dV (8)

where α is a constant, the heat capacity per unit volume.
Now, apply Gauß’ theorem

∫

S

j(r, t).dA =

∫

D

div jdV (9)

so that
∫

D

( div j + α
∂φ

∂t
)dV = 0 (10)

where D is any 3d region with a smooth boundary. Thus

div j + α
∂φ

∂t
= 0 (11)

Assume j = −β grad φ where β is the thermal conductivity constant and the - sign indi-
cates that the heat flows from hot to cold regions

∇
2φ = D

∂φ

∂t
with D =

α

β
(12)

Boundary Value Problems

Typically, we wish to solve a PDE subject to some boundary conditions. Assume φ satisfies
some PDE (e.g. Laplace’s equation) in a 3d region D with boundary S = δD (Picture
IV.1.2). There are three common, basic, types of boundary conditions

1. φ is given on S: Dirichlet boundary conditions.

2. ∂
n
φ = n · ∇φ, directional derivative in direction of unit normal n, is given on S:

Neumann boundary conditions.

3. φ and ∂nφ are given on S: Cauchy boundary conditions.

4. Can also have mixed b.c.s. where on different parts of S different b.c.s are imposed

5. This is not exhaustive since there are other types of b.c.s. such as periodic boundary
conditions.
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We will concentrate on the first two cases, usually the third case, Cauchy conditions, is
too strong and there will be no solution. Typically, Dirichlet boundary conditions lead to
a unique solution and Neumann, to a solution which is unique up to an overall additive
constant. A useful distinction is often made between the simpler, elliptic equations and
parabolic and hyperbolic equations. These terms refer to the relative signs of the deriva-
tive terms, something which has implications for the existence and stability of solutions.
This won’t be discussed here.

Laplace’s Equation

A solution of Laplace’s equation is called a harmonic function. Some simple (singular)
examples:

• 3d φ = 1

r
is harmonic but singular at the origin.

• 2d φ = log r, r =
√

x2 + y2 harmonic but singular at r = 0.

• 1d φ = x is harmonic but singular at ±∞.

• 2d Any holomorphic function ( Complex Analysis ) is harmonic!

Suppose we wish to find a non-singular (e.g. C∞) harmonic function is some domain D
subject to some boundary conditions on S = ∂D. There are important theorems relating
to the uniqueness of the solutions and to the value of the solutions, these theorems are
very useful and are also typical of similar theorems for other similar equations. There are
also important existence theorems, but we do not deal with these here.

Theorem: Uniqueness of the Laplace equation with Dirichlet and Neumann
boundary conditions.

The solution of Laplace’s equation under Dirichlet’s boundary conditions, if it exists, is
unique. The solution of the problem under Neumann boundary conditions, if it exists,
is unique up to an additive constant. This will be proved after considering the Green’s
identities.

Green’s Identities

These should not be confused with Green’s theorem in the plane. Let φ and ψ be smooth
functions, not necessarily harmonic, then

• Green’s First Identity

∫

D

(φ∇2ψ + ∇φ.∇ψ)dV =

∫

S=∂D

φ∇ψ.dA (13)
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• Green’s second Identity
∫

D

(φ∇2ψ − ψ∇2φ)dV =

∫

S=∂D

(φ∇ψ − ψ∇φ).dA (14)

To prove these, well, for the first identity, pply Gauss’ theorem to the vector field
F = φ∇ψ

div F = φ∇.(∇ψ) + ∇φ · ∇ψ = φ∇2ψ + ∇φ.∇ψ (15)

So, for the second identity, interchange φ and ψ in first identity the subtract from
the first identity.

Now, to prove the uniquenss theorem, let φ1 and φ2 be harmonic in D and subject to the
same boundary conditions on S = ∂D (either DBCs or NBCs). Consider φ = φ1 − φ2.
Apply Green’s 1st identity taking ψ = φ

∫

D

(φ△φ+ ∇φ · ∇φ)dV =

∫

φ∇φ · dA (16)

Now, the first term on the left is zero since φ = φ1 − φ2 is harmonic. The right hand side
is also zero because either φ is zero for Dirichlet boundary conditions or ∂

n
φ is zero for

Neumann. Therefore
∫

D

∇φ.∇φdV = 0 (17)

and ∇φ.∇φ is non-negative! This requires ∇φ = 0 or φ = constant, that is, φ1 − φ2 = c

proving the theorem for Neumann conditions. For Dirichlet c must be zero since φ1 and
φ2 agree on S by assumption.

0.0.1 Gauss’ Mean Value Theorem

The Gauss mean value theorem for harmonic functions: suppose φ is harmonic in D ⊂ R3.
The average value of φ over the surface of a sphere of radius R centred at the point r is
φ(r). This is true for any point in the interior of D. The radius R is any number such
that the sphere, and every point inside it, is in D. To prove it, we assume without loss of
generality consider a sphere centred at the origin. Idea is to show that the average

φ̄R =
1

4πR2

∫

x2+y2+z2=R2

φdA (18)

is independent of the radius R. Apply Green’s 2nd identity to φ and ψ = 1

r
in the regions

R1 < r < R2 (Picture 231.IV.1.3).
∫

R1<r<R2

(φ∇2
1

r
−

1

r
∇

2φ)dV (19)

and

=

∫

r=R2,out

(φ∇
1

r
−

1

r
∇φ).dA −

∫

r=R1,out

(φ∇
1

r
−

1

r
∇φ).dA (20)
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Now,
∫

r=R1,out

1

r
∇φ.dA =

1

R1

∫

r=R1,out

∇φ.dA (21)

because 1

r
is constant of sphere r = R1, hence

∫

r=R1,out

1

r
∇φ.dA =

1

R1

∫

r<=R1

div∇φdV =
1

R1

∫

r<=R1

∇
2φdV = 0 (22)

Similarily
∫

r=R2,out

1

r
∇φ.dA = 0 (23)

Thus,

0 =

∫

r=R2,out

φ∇
1

r
.dA −

∫

r=R1,out

φ∇
1

r
.dA (24)

so

∇
1

r
= −

r̂

r2
in both integralsn = r̂ (25)

and

0 = −
1

R2
2

∫

r=R2

φdA+
1

R2
1

∫

r=R1

φdA (26)

or
¯φR2

= ¯φR2
(27)

Letting R → 0, φ̄R = φ(0), R being the radius of the outer sphere, completing the proof.
This leads to the Maximum (minimum) Principle for Harmonic Functions. Let φ

be harmonic in a 3d (or 2d) domain D. Then φ never assumes its maximum (or minimum)
value at an interior point of D unless φ is constant. To prove this, assume φ has a maximum
at some point P in the interior of D. For R sufficiently small the sphere of radius R centred
at P is inside D. For every point on the sphere φ < φ(P ) so φ̄R < φ(P ) contradicting the
MVT. A similar argument holds if P is a minimum. If φ is harmonic in D it assumes its
maximum and minimum values at the boundary S = ∂D

This has a physical interpretation. Heat satisfies the heat equation ∇2 = D ∂φ

∂t
. If φ

reaches a steady state ∂φ

∂t
= 0, then ∇2φ = 0, that is, the temperature is harmonic. Suppose

we have a finite lump of matter and the boundary temperature (not necessarily constant)
is fixed, for example, consider a square slab with three sides fixed to be at 0 degrees and
the other at 100 degrees (Picture IV.1.4). The steady state temperature inside the slab is
harmonic. Steady state temperature can never exceed 100 degrees, or fall below 0 degrees;
heat would immediately flow out of, or enter, such a hot or cold spot.

A similar result for the whole of space is known as Liouville’s Theorem: if φ is
harmonic and bounded throughout R

3 (or R
2) then it is constant. The proof isn’t given

here. φ = 1

r
in three dimensions and φ = log r in two dimensions are unbounded.
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Some solutions

Uniqueness theorem very powerful; any solution with DBCs, however simple is the only
solution.

• Let φ be a harmonic function which is constant, say φ = a, on the boundary of D.
φ(r) = a is trivially a solution of Laplace’s equation with the correct b.c.s.. It must
be the unique solution to this boundary value problem.

• Let φ be harmonic in a 2d annulus with φ = 1 on the other boundary (r = R2) φ = b

on the inner boundary (r = R1). Now φ = C log r+D (r =
√

x2 + y2) harmonic but
singular at origin, with C and D constants.

a = φ(r = R2) = C logR2 +D

b = φ(r = R1) = C logR1 +D

a− b = C log
R2

R1

D = a− C logR2 (28)

and

φ =
a− b

log R2

R1

log rR2 + a (29)

In these two examples we have guessed a solution (which we know to be unique). This is
clearly insufficient for most problems.
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