Note II1.6'2 22 April 2008

Eigenfunctions and Eigenfunction Expansions

There is a strong analogy between solving some of the named ODEs and finding the
eigenvectors and eigenvalues of a matrix.
Hermite’s equation
y" — 2xy’ + 2ay =0
can be written
Ly =Xy
where L is the differential operator
d2
L=———5+2z
da?
and A\ = 2a.
Legendre’s equation can be written in the same way, with

o d
L——(l—:c)w—k?:c% (4)
with A = a.
We can think of the differential operator L as a matrix, albeit an infinite dimensional
one, and the function it acts on, y, as a vector.
To make this more precise it is useful to recall some properties of certain finite, say
n X n, matrices.

e A symmetric matrix S satisfies

sT=5 (5)
where the superscript 7 denotes the transpose [AT];; = [A];;.
e A Hermitian matrix is an n X n matrix with complex entries satisfying
H =0 (6)

where the superscript dagger is the adjoint, the complex conjugate of the transpose

[A1];; = [Alji. (7)
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Clearly a real symmetric matrix is Hermitian.
Let v be an n-component column vector with complex entries. v is an eigenvector of
H if
Hov =) (8)
for some complex number A, the eigenvalue.
Now, an important theorem is that the eigenvalues of a Hermitian matrix are real. To
prove this, let v be an eigenvector of H with eigenvalue A

v Ho = Mo, (9)
Since v'v is real it suffices to prove that v'Hv is real:
viHv = (vTHo)" (10)
since v! Hv is a 1 x 1 matrix
(WHH)T = (vt Ho)T = o THTo = vTHo (11)

if i is Hermitian. Note that (AB)" = BfAT.

Another important property is that the eigenvectors of a Hermitian matrix correspond-
ing to distinct eigenvalues are orthogonal, that is if Hvy = Ajuy Huvy = Muy with
A1 # Ao then 'UIUQ = 0 or, in the inner product notation, (vy,v2) = 0. To prove this we
take the eigenvector equations and multiply them on the left to give

v;Hvl = Alv;vl
v;[HUQ = /\111;[1;2

Take the complex conjugate of the second
U;H’L’l = /\zv;vl
using HT = H and X, = )\, Subtracting the first gives
0= (A — Al)v;m (14)

so that (vg,v;) = 0if A\; # Aa. If the eigenvalues are degenerate we can choose eigenvectors
to be orthogonal using Gram-Schmidt orthogonalization.

Thus, we can choose the n eigenvectors v;, i = 1,2, ...,n, of an Hermitian matrix H to
be orthonormal

(’U,L'7 ’Uj) = (51']' (16)

Any n-component vector v can be written as a linear combination of the v;s

V= U1 + CoUg + ... + U, (17)




where c1, ¢g,... ¢, are complex numbers. Using the orthonormal property
(v;,v) = ¢ (18)

Also
o] = (v,v) = |er|* + | + oo+ eal?, (19)

which can be thought of as an n-dimensional version of Pythagoras or a finite dimensional
version of Parseval.
Furthermore, the eigenvector basis can be used to rewrite the matrix

n
H= Z Al’l)l UL
i=1

since we know by definition

Hv = H(c1v1 + Uz + ... + cuty) = 1 A01 + CodaUa + ...+ Cu AUy, (21)

Z Aﬂ)z‘ ’U:’Uj = )\jvj (22)
i=1

so this will have the same effect on v. The resolution of unity is a similar formula for the
identity matrix, it can be written as

I = Zvi U;[, (23)
i=1

since acting on any vector, v = ¢1v1 + CoUs + ... + ¢, U, Will reproduce v. The inverse of an
Hermitian matrix can be written as

—1 - 1 T
H " = Z /\—ivi vy,
i=1

since left or right multiplication by H reproduces the identity matrix.
Now, back to differential operators. A differential operator L acts on some vector space
of functions. It is normal to require functions to be such that

/ dz u(z)(Lu)(z) < oo. (24)
and, in practice, it is usual to impose further restrictions on the functions such as
1. square integrability ffooo dz u(z)u(zr) < co.

2. periodicity

3. vanishing at the end points of an interval [a,b] C R; u(a) = u(b) = 0.
In each of these cases an inner product can be defined

L (u,v) = [ dz u(z)v(z)

2. (u,v) = [T dx u(x)u(x)

3. (u,v) = fab dx a(x)v(x).

Once an inner product is defined, we can look for an analogue of a Hermitian matrix.
Suppose
(u, Lv) = (Lu,v) (25)

for any u, v in the chosen space of functions then L is called symmetric. If some further
technical requirements are met it is called self-adjoint or Hermitian. We will be sloppy
and call any symmetric operator Hermitian. An example is

d2

for any of the three conditions above. Here the symmetric condition is just

—/ dx u(z)v"(z) = —/ dz 1"v(z). (27)

To establish this integrate by parts twice, for example, for the periodic case

/jr dz a(z)v"(z) = u(x)v'(2)|", — /7r dz @' (z)v'(z) (28)

™ -7

a(z)v'(z)|, is zero since u and v are periodic. Integrating by parts once more gives the
result.

L = —d?/dx? can be viewed as an Hermitian matrix acting on the space of periodic
functions (I = 2w). The eigenvectors, or eigenfunctions, are the functions

vp(z) = ™ (29)
with n € Z) with corresponding eigenvalues
Ay =n? (30)
These are orthogonal, as expected since L is Hermitian,
(U, Un) = / dx U (z)vp(x) = / dx e~ mTenT — (31)
for n # m. Can make them orthonormal
1
vp(z) = —
71( ) \/E
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Cinr): (32)




gives
(vma /Un) = 67nn- (33)
A periodic function, f, can be thought of as a vector in the space acted on by L.
Expanding f in eigenvectors of L

f(I) = ZCHU”($) (34)

nez

just gives Fourier analysis

1 " —imz T
Cm = (U, f) = \/—2? /_7r dx e f(x). (35)

Fourier analysis is thus equivalent to expanding in eigenvectors of the Hermitian operator
L = —d?/dx?. We can choose a different Hermitian operator and this leads to alternative
expansions: we expect to able to get Legendre series, Hermite series and so on, instead of
the Fourier series.

Legendre Series
Consider Legendre’s equation
(1= 2*)y"(z) = 2zy/(2) + ay(z) = 0 (36)

This ODE has, regular, singularities at © = £1. If « is of the form a = n(n + 1) where n
is a non-negative integer then the ODE has a polynomial solution, see problem sheet 17,
which is well defined at = = +1, the other solutions all blow up at z =1 or z = —1.

We can rewrite the the ODE as an eigenvalue problem:

Ly(x) Ny(z),
&2 d

L (1 —2?) == +22—. 37

(1 =a%) s + 20 (37)
Let us consider in L in the space of functions which are finite throughout [—1, 1]; this will
include the polynomial solutions, but will exclude the other solutions since they blow up
at the end points. The inner product is taken as

1
(u,v) = / dz u(z)v(z). (38)
-1
It is straightforward to prove that with these boundary conditions L is Hermitian; it helps
to write L in the form

d 5 d
L=——(1-2%—. 39
a1 =) (39)
The eigenfunctions are the polynomial solutions of Legendre’s equation P,(x) with n =
0,1,2, ... with corresponding eigenvalues A, = n(n+1). The first few Legendre polynomials

are Py(z) =1, Pi(z) = z and Py(z) = (32> — 1).
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For n even or odd P, is even or odd, like the Hermite polynomials. There are various
formulae for the Legendre polynomials, for example they can be combined into a generating
function

®(x,h) = (1 —2zh+h?) "2 = ih"Pn(z)‘ (40)

The polynomials are orthogonal, they can be made orthonormal, but the following conven-
tion is standard

[ do (P)) - T (41)

Let f be a function defined on [—1,1]. Can expand in Legendre polynomials (i.e. in
the eigenfunctions of the Hermitian operator L)

Much as in Fourier analysis
oo

= 25 2
Pm7 = an7Pn = n&:#7
(B, f) ;c( ) ;C 2m+1 2m+1

so that

n=(m+3) = (m+3) [ e Patiso)

Hermite’s equation
y'(x) — 20y (z) + 2ay(x) = 0

can be written as Ly(z) = Ay(x), where

d? d
L=——+22— 4
dx? + Yz (46)

with A = 2a. the problem is L is not Hermitian! (u, Lv) # (Lu,v) regardless of boundary
conditions. However if we change the definition of the inner product

(ty V) pew = / dz e u(z)v(). (47)

the operator is Hermitian and similar results as to the Legendre case can be derived using
the new inner product.




