
Note III.612 22 April 2008

Eigenfunctions and Eigenfunction Expansions

There is a strong analogy between solving some of the named ODEs and finding the
eigenvectors and eigenvalues of a matrix.

Hermite’s equation
y′′ − 2xy′ + 2αy = 0 (1)

can be written
Ly = λy (2)

where L is the differential operator

L = − d2

dx2
+ 2x (3)

and λ = 2α.
Legendre’s equation can be written in the same way, with

L = −(1 − x2)
d2

dx2
+ 2x

d

dx
(4)

with λ = α.
We can think of the differential operator L as a matrix, albeit an infinite dimensional

one, and the function it acts on, y, as a vector.
To make this more precise it is useful to recall some properties of certain finite, say

n × n, matrices.

• A symmetric matrix S satisfies
ST = S (5)

where the superscript T denotes the transpose [AT ]ij = [A]ji.

• A Hermitian matrix is an n × n matrix with complex entries satisfying

H† = H (6)

where the superscript dagger is the adjoint, the complex conjugate of the transpose

[A†]ij = [A]ji. (7)

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Based on notes I got from Chris Ford
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Clearly a real symmetric matrix is Hermitian.
Let v be an n-component column vector with complex entries. v is an eigenvector of

H if
Hv = λv (8)

for some complex number λ, the eigenvalue.
Now, an important theorem is that the eigenvalues of a Hermitian matrix are real. To

prove this, let v be an eigenvector of H with eigenvalue λ

v†Hv = λv†v. (9)

Since v†v is real it suffices to prove that v†Hv is real:

v†Hv = (v†Hv)T (10)

since v†Hv is a 1 × 1 matrix

(v†Hv)T = (v†Hv)† = v†H†v = v†Hv (11)

if H is Hermitian. Note that (AB)† = B†A†.
Another important property is that the eigenvectors of a Hermitian matrix correspond-

ing to distinct eigenvalues are orthogonal, that is if Hv1 = λ1v1 Hv2 = λ2v2 with
λ1 6= λ2 then v†

1
v2 = 0 or, in the inner product notation, (v1, v2) = 0. To prove this we

take the eigenvector equations and multiply them on the left to give

v†
2
Hv1 = λ1v

†
2
v1

v†
1
Hv2 = λ1v

†
1
v2 (12)

Take the complex conjugate of the second

v†
2
Hv1 = λ2v

†
2
v1 (13)

using H† = H and λ̄2 = λ2 Subtracting the first gives

0 = (λ2 − λ1)v
†
2
v1 (14)

so that (v2, v1) = 0 if λ1 6= λ2. If the eigenvalues are degenerate we can choose eigenvectors
to be orthogonal using Gram-Schmidt orthogonalization.

Thus, we can choose the n eigenvectors vi, i = 1, 2, ..., n, of an Hermitian matrix H to
be orthonormal

v†
i vj = δij (15)

or
(vi, vj) = δij (16)

Any n-component vector v can be written as a linear combination of the vis

v = c1v1 + c2v2 + ... + cnvn (17)
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where c1, c2,... cn are complex numbers. Using the orthonormal property

(vi, v) = ci (18)

Also
|v|2 = (v, v) = |c1|2 + |c2|2 + ... + |cn|2, (19)

which can be thought of as an n-dimensional version of Pythagoras or a finite dimensional
version of Parseval.

Furthermore, the eigenvector basis can be used to rewrite the matrix

H =

n
∑

i=1

λivi v†
i , (20)

since we know by definition

Hv = H(c1v1 + c2v2 + ... + cnvn) = c1λ1v1 + c2λ2v2 + . . . + cnλnvn (21)

and
n

∑

i=1

λivi v†
i vj = λjvj (22)

so this will have the same effect on v. The resolution of unity is a similar formula for the
identity matrix, it can be written as

I =

n
∑

i=1

vi v†
i , (23)

since acting on any vector, v = c1v1 + c2v2 + ... + cnvn, will reproduce v. The inverse of an
Hermitian matrix can be written as

H−1 =

n
∑

i=1

1

λi

vi v†
i ,

since left or right multiplication by H reproduces the identity matrix.
Now, back to differential operators. A differential operator L acts on some vector space

of functions. It is normal to require functions to be such that

∫

dx ū(x)(Lu)(x) < ∞. (24)

and, in practice, it is usual to impose further restrictions on the functions such as

1. square integrability
∫ ∞

−∞
dx ū(x)u(x) < ∞.

2. periodicity
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3. vanishing at the end points of an interval [a, b] ⊂ R; u(a) = u(b) = 0.

In each of these cases an inner product can be defined

1. (u, v) =
∫ ∞

−∞
dx ū(x)v(x)

2. (u, v) =
∫ π

−π
dx ū(x)u(x) (l = 2π)

3. (u, v) =
∫ b

a
dx ū(x)v(x).

Once an inner product is defined, we can look for an analogue of a Hermitian matrix.
Suppose

(u, Lv) = (Lu, v) (25)

for any u, v in the chosen space of functions then L is called symmetric. If some further
technical requirements are met it is called self-adjoint or Hermitian. We will be sloppy
and call any symmetric operator Hermitian. An example is

L = − d2

dx2
(26)

for any of the three conditions above. Here the symmetric condition is just

−
∫

dx ū(x)v′′(x) = −
∫

dx ū′′v(x). (27)

To establish this integrate by parts twice, for example, for the periodic case
∫ π

−π

dx ū(x)v′′(x) = ū(x)v′(x)|π−π −
∫ π

−π

dx ū′(x)v′(x) (28)

ū(x)v′(x)|π−π is zero since u and v are periodic. Integrating by parts once more gives the
result.

L = −d2/dx2 can be viewed as an Hermitian matrix acting on the space of periodic
functions (l = 2π). The eigenvectors, or eigenfunctions, are the functions

vn(x) = einx (29)

with n ∈ Z) with corresponding eigenvalues

λn = n2 (30)

These are orthogonal, as expected since L is Hermitian,

(vm, vn) =

∫ π

−π

dx v̄m(x)vn(x) =

∫ π

−π

dx e−imxeinx = 0 (31)

for n 6= m. Can make them orthonormal

vn(x) =
1√
2π

einx (32)
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gives
(vm, vn) = δmn. (33)

A periodic function, f , can be thought of as a vector in the space acted on by L.
Expanding f in eigenvectors of L

f(x) =
∑

n∈Z

cnvn(x) (34)

just gives Fourier analysis

cm = (vm, f) =
1√
2π

∫ π

−π

dx e−imxf(x). (35)

Fourier analysis is thus equivalent to expanding in eigenvectors of the Hermitian operator
L = −d2/dx2. We can choose a different Hermitian operator and this leads to alternative
expansions: we expect to able to get Legendre series, Hermite series and so on, instead of
the Fourier series.

Legendre Series

Consider Legendre’s equation

(1 − x2)y′′(x) − 2xy′(x) + αy(x) = 0 (36)

This ODE has, regular, singularities at x = ±1. If α is of the form α = n(n + 1) where n
is a non-negative integer then the ODE has a polynomial solution, see problem sheet 17,
which is well defined at x = ±1, the other solutions all blow up at x = 1 or x = −1.

We can rewrite the the ODE as an eigenvalue problem:

Ly(x) = λy(x),

L = −(1 − x2)
d2

dx2
+ 2x

d

dx
. (37)

Let us consider in L in the space of functions which are finite throughout [−1, 1]; this will
include the polynomial solutions, but will exclude the other solutions since they blow up
at the end points. The inner product is taken as

(u, v) =

∫

1

−1

dx ū(x)v(x). (38)

It is straightforward to prove that with these boundary conditions L is Hermitian; it helps
to write L in the form

L = − d

dx
(1 − x2)

d

dx
. (39)

The eigenfunctions are the polynomial solutions of Legendre’s equation Pn(x) with n =
0, 1, 2, ... with corresponding eigenvalues λn = n(n+1). The first few Legendre polynomials
are P0(x) = 1, P1(x) = x and P2(x) = 1

2
(3x2 − 1).
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For n even or odd Pn is even or odd, like the Hermite polynomials. There are various
formulae for the Legendre polynomials, for example they can be combined into a generating
function

Φ(x, h) = (1 − 2xh + h2)−
1

2 =

∞
∑

n=0

hnPn(x). (40)

The polynomials are orthogonal, they can be made orthonormal, but the following conven-
tion is standard

∫

1

−1

dx (Pn(x))2 =
2

2n + 1
. (41)

Let f be a function defined on [−1, 1]. Can expand in Legendre polynomials (i.e. in
the eigenfunctions of the Hermitian operator L)

f(x) =

∞
∑

n=0

cnPn(x). (42)

Much as in Fourier analysis

(Pm, f) =

∞
∑

n=0

cn(Pm, Pn) =

∞
∑

n=0

cn

2δmn

2m + 1
=

2cm

2m + 1
, (43)

so that

cm =

(

m +
1

2

)

(Pm, f) =

(

m +
1

2

)
∫

1

−1

dx Pm(x)f(x). (44)

Hermite’s equation
y′′(x) − 2xy′(x) + 2αy(x) = 0 (45)

can be written as Ly(x) = λy(x), where

L = − d2

dx2
+ 2x

d

dx
, (46)

with λ = 2α. the problem is L is not Hermitian! (u, Lv) 6= (Lu, v) regardless of boundary
conditions. However if we change the definition of the inner product

(u, v)new =

∫

dx e−x2

ū(x)v(x). (47)

the operator is Hermitian and similar results as to the Legendre case can be derived using
the new inner product.
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