
Note III.512 12 April 2008

The method of Fröbenius

For the general homogeneous ordinary differential equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (1)

the series method works, as in the Hermite case, where both p and q are smooth. If p
and q have singularities the series method sometimes fails, and example is Euler’s equation
αx2y′′ + βxy′ + γy = 0 or p(x) = β/(αx) and q(x) = γ/(αx2). The explicit solution
y = C1x

λ1 + C2x
λ2 picked up by power series method, unless both roots λ1 and λ2 are

positive integers, because xλ is not of the form of the ansatz

y =
∞

∑

n=0

anx
n (2)

for any ans, unless λ is itself a natural number.
One way out is to expand about a point other than x = 0:

y(x) =
∞

∑

n=0

an(x − c)n (3)

where p(c) and q(c) are finite. However, a singular point can often be the ‘most symmetric’
point and, in many cases, exactly the point we are interested in.

Frobenius (or generalised series) method allows one to expand about a regular singu-

larity, described later, of p and q. Without loss of generality consider an expansion about
x = 0. Consider a solution of the form

y(x) =

∞
∑

n=0

an xn+s (4)

where s is some real number. Unlike in the standard power series method a0 is always
taken to be non-zero; the odd solution of Hermite’s equation would emerge as an s = 1
Frobenius series with a0 6= 0. Starting with s arbitrary consistency will lead to a quadratic
equation for s called the indicial equation.

The Bessel Equation

The Bessel equation is

y′′ +
1

x
y′ +

(

1 −
ν2

x2

)

y = 0 (5)

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Based on notes I got from Chris Ford
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or, multiplying across by x2,

x2y′′ + xy′ +
(

x2 − ν2
)

y = 0 (6)

It is one of the important equation of applied mathematics and engineering mathematics
because it is related to the Laplace operator in cylindrical coördinates. The Bessel equation
is solved by series solution methods, in fact, to solve the Bessel equation you need to use
the method of Fröbenius. It might be expected that Fröbenius is needed because of the
singularities at x = 0, however, lets pretend we hadn’t noticed and try to use the ordinary
series solution method:

y =
∞

∑

n=0

anx
n (7)

Now, by calculating directly

x2y′′ =

∞
∑

n=0

n(n − 1)anx
n (8)

and

x2y′ =

∞
∑

n=0

nanx
n (9)

so the equation becomes

∞
∑

n=0

n(n − 1)anx
n +

∞
∑

n=0

nanxn +

∞
∑

n=0

anxn+2 − ν2

∞
∑

n=0

anxn = 0 (10)

Hence, if we want to go up to the highest power we need to increase everything to the form
x to the n + 2. By letting m + 2 = n we get

∞
∑

n=0

n(n − 1)anx
n =

∞
∑

m=0

(m + 2)(m + 1)am+2x
m+2 (11)

and
∞

∑

n=0

nanxn =
∞

∑

m=0

(m + 2)am+2x
m+2 (12)

and, finally,
∞

∑

n=0

nanx
n = a0 + a1x +

∞
∑

m=0

am+2x
m+2 (13)

Putting this all back in to the equation, renaming m to n in the usual way, we get

a + 0 + a1x

∞
∑

n=0

[

(n + 2)(n + 1)an+2 + (n + 2)an+2x
n − ν2an+2 + an

]

xn+2 = 0 (14)
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which gives recursion relation

an+2 = −
an

(n + 2)2 − ν2
(15)

along with a0 = a1 = 0. Thus, while we get a perfectly good two step recursion relation,
the extra conditions, on a0 and a1 lead to the solution being trivial. Hence, the solution
of the series form is trivial and, clearly, to find the actual solution, a more general series
ansatz is needed.

Fröbenius means that you look for a solution of the form

y =

∞
∑

n=0

anx
n+r (16)

Now, in terms of this series we have

x2y′′ =

∞
∑

n=0

an(n + r)(n + r − 1)xn+r

xy′ =
∞

∑

n=0

an(n + r)xn+r

x2y =
∞

∑

n=0

anx
n+r+2

ν2y =
∞

∑

n=0

ν2anxn+r (17)

As usual, we move to the highest power, in this case n + r + 2, without going through the
details, this gives

x2y′′ = r(r − 1)a0x
r + r(r + 1)a1x

r+1 +
∞

∑

n=0

an+2(n + r + 2)(n + r + 1)xn+r+2 (18)

and

xy′ = ra0t
r + r(r + 1)a1x

r+1 +

∞
∑

n=0

an+2(n + r + 2)xn+r+2 (19)

and finally

ν2y = ν2a0x
r + ν2a1x

r+1 +

∞
∑

n=0

an+2x
n+r+2 (20)

Now, if we put this all in one equation and set the xr terms to zero, we have

[r(r − 1) + r − v2]a0 = 0 (21)

or, put another way, either a0 = 0 or r = ±ν. The xr+1 term gives

[(r + 1)2 − ν2]a1 = 0 (22)
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so, with r = ±nu a1 = 0
Now, the recusion relation is

[(n + r + 2)(n + r + 1) + (n + r + 2) − ν2]an+2 = −an (23)

so, with r = ±ν we have

an+2 = −
an

(n ± ν + 2)2 − ν2
(24)

and so there are two solutions to the Bessel equation, one corresponding to r = ν and the
other with r = −ν. If ν = 0 the situation is more complicated, this example is dealt with
in a problem sheet.

Here we consider the case ν = 1

2
so that s = ±1

2
. The recursion relation can be written

am+2 = −
am

(m + 2 + 1

2
)2 − 1

4

= −
am

(m + 2)(m + 3)
. (25)

Since a1 = 0 the recursion relation implies that a3, a5, a7 etc. are all zero. Fixing a0 = 0
and applying the recursion relation gives

a2 = −
a0

2 · 3
= −

1

2 · 3

a4 = −
a2

4 · 5
=

1

2 · 3 · 4 · 5
=

1

5!

a6 = −
1

7!
(26)

and so on. Thus, the solution is

y(x) = x
1

2 −
x

5

2

3!
+

x
9

2

5!
− ...

= x−
1

2

(

x −
x3

3!
+

x5

5!
− ...

)

= x−
1

2 sin x. (27)

where we have used sin x = x − x3

3!
+ x5

5!
− ...)

The other root s = −1

2
leads to

y(x) = x−
1

2 cos x, (28)

and so the general solution of the ν = 1

2
problem is

y(x) = x−
1

2 (C1 cos x + C2 sin x) . (29)
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Fuch’s theorem

The method of Frobenius gives a series solution of the form

y(x) =

∞
∑

n=0

an (x − c)n+s

where p or q are singular at x = c. Method does not always give the general solution, the
ν = 0 case of Bessel’s equation is an example where it doesn’t. There is a theorem dealing
with the applicability of the Frobenius method in the case of regular singularities.

x = c is a regular singular point if (x − c)p(x) and (x − c)2q(x) can be expanded as a
power series about x = c. All the singular ODEs we have met have regular singularities,
an example of an ODE with a non-regular singularity x3y′′ + y = 0 since here q(x) = 1/x3

so that x2q(x) = 1/x cannot be expanded about x = 0.
If p and q are non-singular at x = c, x = c is called an ordinary point of the ODE

y′′(x) + p(x)y′(x) + q(x)y(x) = 0.
Fuchs’ Theorem states that if x = c is a regular singular or ordinary point of the

ODE
y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (30)

if and only if the two solutions are Frobenius series or one solution is a Frobenius series,
S1(x) and the other solution is of the form y(x) = S1(x) log(x − c) + S2(x) where S2(x) is
another Frobenius series, it is not a solution on its own. The proof of this isn’t given.

The second case occurs when the indicial equation has equal roots and sometimes when
the roots differ by an integer, an example is the ν = 1 case of Bessel’s equation).

Finding a Second Solution

If one solution of y′′(x) + p(x)y′(x) + q(x)y(x) = 0 can be found another one can be
constructed. Let u(x) be a solution then try y(x) = u(x)v(x) then a short calculation gives

y′′ + py′ + qy = (u′′ + pu′ + qu)v + (2u′ + pu)v′ + uv′′ = 0. (31)

Now since u is, by assumption, a solution the first term on the right hand side is zero
giving

(2u′ + pu)v′ + uv′′ = 0. (32)

This is a first order linear ODE for v′(x).
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