
Note III.412 31 March 2008

Series Solutions

The idea behind series solutions is to write y as a power series about x = 0 or some other
point

y(x) =
∞∑

n=0

anxn, (1)

and determine a recursion relation for the an coefficients.
Here is a simple example where we know what the answer should be

y′
− y = 0 (2)

Now, assuming convergence,

y′(x) =
∞∑

n=0

nanxn−1, (3)

and so substituting into the equation gives

∞∑

n=0

nanxn−1
−

∞∑

n=0

anxn = 0 (4)

The way series solutions works is we try to express this in the form
∑

n

stuffnxn = 0 (5)

and the stuffn gives the recursion relation. The problem here is the different powers of x
in the sums, we fix this by doing a change of index m = n − 1 so

∞∑

n=0

nanxn−1 =
∞∑

m=−1

(m + 1)am+1x
m (6)

and now the sum limits are different to the limits of the other term in the equation, we fix
this by doing the first term seperately, in this case the m = −1 term is zero, so

∞∑

m=−1

(m + 1)am+1x
m =

∞∑

m=0

(m + 1)am+1x
m (7)

Now, we m is just a dummy index, we can name it back to n and the equation becomes

y′
− y =

∞∑

n=0

(n + 1)an+1x
n
−

∞∑

n=0

anxn

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2Based on notes I got from Chris Ford

1



=
∞∑

n=0

[(n + 1)an+1 − an]xn = 0 (8)

and, since the xn are independent, for this to be true for all x every coefficient of every
power of x must vanish, giving

an+1 =
an

n + 1
(9)

This is the recursion relation, it allows us to calculate higher an’s from lower ones, for
n = 0 it gives a1 = a0, for n = 1 it gives a2 = a1/2 = a0/2 and so on. The a0 is arbitrary, it
is the arbitrary constant you would expect for a first order differential equation. Of course,
in this case it is easy to see that an = a0/n!, as you would expect: we know this equation
is solved by y = A exp x where A is an arbitrary constant.

Here is another example, consider

y′′
− xy = 0 (10)

so assuming we can find a solution of the form

y(x) =

∞∑

n=0

anxn, (11)

we have

xy =

∞∑

n=0

anxn+1, (12)

and

y′′ =

∞∑

n=0

ann(n − 1)xn−2, (13)

Substituting into the equation we have

∞∑

n=0

ann(n − 1)xn−2
−

∞∑

n=0

anxn+1 = 0 (14)

and so we take the first term and shift its index up three so that the exponent of x has the
same form as in the second term

∞∑

n=0

ann(n − 1)xn−2 =

∞∑

m=−3

am+3(m + 3)(m + 2)xm+1

= 2a2 +
∞∑

m=0

am+3(m + 3)(m + 2)xm+1 (15)

where we have removed the m = −3, −2 and −1 terms from the sum, but only the −1
term is non-zero. Renaming m to n we have

2a2 +
∞∑

n=0

an+3(n + 3)(n + 2)xn+1
−

∞∑

n=0

anxn+1 = 0 (16)
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and, again, substituting every coefficient of every power of x to zero we get recursion
relations

a2 = 0 (17)

and
an+3 =

an

(n + 3)(n + 2)
(18)

Now, we have a three-step recursion relation, but with a2 = 0; so there are two arbitrary
constants

a0 = y(0)
a1 = y′(0) (19)

where the constants are related to the initial conditions by substituting x = 0 into the
series for y and y′.

Now, Consider Hermite’s equation

y′′
− 2xy′ + 2αy = 0 (20)

So, we let

y(x) =
∞∑

n=0

anxn, (21)

so

xy′(x) =
∞∑

n=0

nanxn, (22)

and

y′′(x) =

∞∑

n=0

n(n − 1)anx
n−2 =

∞∑

m=0

(m + 2)(m + 1)am+2x
m (23)

where we have changed index to m = n + 2 and used that the first two terms in the sum
are zero. This gives

y′′
− 2xy′ + 2αy =

∞∑

n=0

[(n + 2)(n + 1)an+2 + 2(α − n)an] xn = 0. (24)

This implies that the content of the square bracket is zero for all n leading to the recursion
relation

an+2 =
2(n − α)an

(n + 1)(n + 2)
. (25)

From this two independent solutions can be obtained.

• An even solution: Set a1 = 0. Recursion relation → a3, a5, a7 etc. all zero. Fix
a0 = 1 and apply recursion relation

a2 = −

2αa0

1 · 2
= −

2α

1 · 2
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a4 =
2(2 − α)a2

3 · 4
= 22

(α − 2)α

1 · 2 · 3 · 4

a6 =
2(4 − α)a4

5 · 6
= −

23(α − 4)(α − 2)α

6!
(26)

so the pattern clear

a2m =
(−2)m

(2m)!
(α − 2m + 2)(α − 2m + 4)...α (27)

where we define 0! = 1. An even solution of Hermite’s equation reads

ye(x)

∞∑

m=0

(−2)m

(2m)!
(α − 2m + 2)(α − 2m + 4)...α x2m. (28)

This series is convergent with radius of convergence=∞; the ratio test can be used to
prove this, we don’t persue issues of convergence here. For special values of α, even
and positive, the series terminates and the solution is a polynomial of degree α. For
example, when α = 2 a4, a6, a8 and so on, are all zero and

yeven(x) = 1 − 2x2 (29)

You can check that this satisfies Hermite’s equation.

• An odd solution: Set a0 = 1, a1 = 1. Recursion relation → a2, a4, a6 et. all zero.
Odd coefficients can be worked out via the recursion formula. If α is an odd integer
the series will terminate producing a polynomial of degree α.

The general solution of Hermite’s equation is therefore

y = C1ye(x) + C2yo(x) (30)

where ye and yo are the even and odd solutions.

Generating function

If α is a positive integer one of the solutions to Hermite’s equation is polynomial. Such
functions are called Hermite polynomials. Remarkably, all the polynomials can be com-
bined into a single generating function. Consider Φ(x, h) = e2xh−h2

. Expanding this in
powers of h:

Φ(x, h) =

∞∑

n=0

hn

n!
Hn(x)

Hn(x) are polynomial solutions of Hermite’s equation.
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