Note II1.1'2 19 February 2007 is homogeneous, where p(z), ¢(z) and f(z) are some, given, functions of z. Now
substituting Ay, + By, gives

Part III: ODEs (Ay1+Bya)"+p(Ayi+Byz) +q(Ay1+Bys) = Ay +py;+ay1)+B(ys+pys-taye) = (A+B) f
A differential equation is an equation involving derivatives. An ordinary differential when y; and ys are solutions. Hence Ay, + By, is a solution is A + B = 1. ©)

equation (ODE) is a differential equation involving a function, or functions, of only one
variable. If the ODE involves the nth (and lower) derivatives it is said to be an nth order The general first order linear ODE, for a single function, can be written
ODE. Let y be a function of one variable z, for neatness, we will try to always use = as
the dependent variable and prime for derivative. An equation of the form a(z)y'(z) + b(z)y(z) = f(x) (7)

hy(z,y(x),y'(x)) =0 (1) where a, b and f(z) are arbitrary functions. The equation is homogeneous if f = 0. A

common standard form is write the equation as

is a first order ODE.
ho(z, y(z),y'(2),y"(x)) =0 (2) y'(z) +p()y(z) = f(z)

is second order. A function satisfying the ODE is called a solution of the ODE. where p = b/a and f/a has been renamed back to f.

The general 2nd order linear ODE is

Li ODEs (2 t
incar ODESs (2 types) a(ey (&) + by (x) + c(@)y(e) = (2)

There are two types of linear ODEs
where a, b, ¢ and f are arbitrary functions and the equation is homogeneous if f = 0.
Again, another standard form is

y" (@) + p(2)y'(x) + q(x)y(z) = f(x) (10)

1. Homogeneous: If y; and y, are solutions so is Ay; + Bys where A and B are
arbitrary constants.

2. Inhomogeneous: If y; and y, are solutions so is Ay; + By, where A+ B = 1.

where, obviously, the point is in a homogeneous equation, all the terms are y terms, whereas First order linear differential equations.

the inh 3 3 tion has tra forcing t . .
e inhomogeneous equation has an extra ing term All solutions of

/ / / P - o
¢ Homogeneous example: The equation Y (@) +p(@)y(x) = f(2) (11)
" , can be written
y" +p(x)y +q(z)y =0 3) y(x) = Cyi(x) + yp(x) (12)

is homogeneous, where p(x) and ¢(x) are some, given, functions of x. Now substitut- where y1 () is a solution of the corresponding homogeneous equation y'(x)+p(x)y(z) = 0
ing Ay, + By, gives and y,(x) is one solution of the full equation. This can be demonstrated by explicit
construction.

0 Y (x) + plx)y(x) = f(x) (13)

(Ays+ Bya)" +p(Ay1+ By2)' +q(Ayr+ Bya) = A(y) +pyr+qy) + By +pys+aqye) =
(4)

. can be rewritten
when y; and y, are solutions.

Ty () = O f () (19

e Inhomogeneous example: The equation

Y+ p(ey + o)y = f() (5) I(z) /%w@. (15)

a
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and, here, a is an arbitrary constant. Now, I'(z) = p(z) and I is called an integrating
factor. Integrate from a to x

e!@y(z) — ! Dy(a) = / dze!@ f(2). (16)
a
with e/(® = 1. This gives
y(z) = Cyn(x) + yp(2), (17)
with y1(z) = e'@, y,(z) = '@ [*dze’®) f(z) and C = y(a). In practise, this method
will always find a solution, but, often, it is quicker just to stare at the equation and then
guess a solution and check it works.

e Example Find all solutions of the ODE 1

V(@) + Tyla) = o, (15)

Here p(z) = 1/x which has a non-integrable singularity at = 0! Work with « > 0,
or z < 0. First, the integrating factor I(z) = [dap(z) = logx + ¢. Set ¢ = 0, or
a=1. e!® =z 5o that the ODE can be written

d

) =2t (19)

Integrating gives xy = %x‘E + C or y = ta' + Cfz, that is yi(2) = 1/x, yp(z) = %x“.

Second order case

All solutions, or the general solution of

y" (@) + p(2)y'(z) + q(x)y(z) = f(z) (20)

are given by

y(@) = Crya(x) + Caya(x) + yp(2) (21)
where ¥, yo are linearly independent solutions of the corresponding homogeneous equa-
tion

y" () + p(2)y'(z) + q(z)y(z) = 0 (22)
and y,(z) is a solution of the full equation. C; and Cy are arbitrary constants. This isn’t
proved here, but it is easy to understand why it would be the case: this is a second order
equation so it nears to arbitrary constant, in the initial value problem, one matches y(0)
and the other y'(0). Now, if you have a solution, adding a solution of the corresponding
homogeneous problem gives you another solution and the homogeneous problem also has
a two-dimensional space of solutions, so it all mathes up. y,(z) is called a particular
integral. The general solution is sometimes written

Y(7) = ye(x) + yp(x) (23)

where y.(z) = Ciy1(x) 4+ Cays(x) is called the complementary function. It is the general
solution of the homogeneous form of the ODE.

3

Constant Coeffcients
We now consider the special case where the coefficients a, b and ¢ are constants

ay”(z) +by'(z) + cy(z) = f(2). (24)
This type of equation has a nice interpretation as a damped/driven oscillator where

we will use ¢ instead of x as the variable, since it is time. y is the displacement from
equilibrium. Recall the equation for a simple harmonic oscillator

2
T _ iy (25)
Now add in a damping force proportional to the velocity dy/dt and a driving force f(t),
which may be periodic or non-periodic,
d*y(t)
dt?
which is a linear ODE with constant coeffcents.

So, back to the general constant coefficient form with = as the variable, the first step
in solving ODEs of this type is to find two solutions of the homogeneous equation

= —y(0) 7D 4 g (26)

ay”(z) + by'(z) + cy(z) = 0. (27)

This equation has simple exponential solutions of the form y(z) = e

y'(2) = e’ and y”(x) = A2 so that

. Differentiating

ay"(x) + by’ +cy = (aX? + b\ + o)y (28)

which is zero provided
aX? + b +c=0. (29)

This is called an auxiliary equation. Thus y;(z) = e and y,(x) = *2* where \; and
Ao are roots of the quadratic auxiliary equation. The complementary function, if A\; # Ao,
is yo(z) = C1eM7 4 Cyet>.

If Ay = Ay we only have one exponential solution. In this case a second solution of the
ODE is y(x) = zeM® and y.(z) = C1eM® 4 Core’®. In the oscillator model this special
case corresponds to critical damping. This trick is justified by the fact it works; there are
ways to derived it, for example, by converting the equation into two first order equations
using y; = y and 32 = 3’ and then diagonalizing the corresponding matrix equation and
solving using an integrating factor. In practise, the easiest thing is to keep adding powers
of x until you have two solutions.

e Example: y”+3y’ +2y = 0 has auxiliary equation A\2+3X+2 = 0 with roots \; = 1,
A2 = 2 so the general solution is

y(z) = Cre® + Coe™ (30)

This corresponds to over damping.




e Example: y” + 2y’ + y = 0 has auxiliary equation A% + 2\ + 1 = 0 with two equal
roots A = 1 and so the general solution is

y(x) = (Cy + Coz)e” (31)

e Example: If the auxiliary equation A\* + X+ 1 = 0 with complex roots A = % + %\/?)’L
the general complex solution is

y(x) — Cl€7ér+7%\/31 + 0267%171%\/3.1 (32)

where C and C5 are complex constants. The general real solution can be obtained
by imposing the constraint Cy = Cf :

1 1 1
y(z) = e 2" {Ci (cos 5\/§T + isin cos 5\/5)10) + c.c} (33)
Writing C) = %(A —4B) where A and B are real constants gives
1, 1 1
ylxz) =e 2" Acosg\/ngrBsmi\/gx (34)

this is the underdamped case, it still oscillates.
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