
Note III.112 19 February 2007

Part III: ODEs

A differential equation is an equation involving derivatives. An ordinary differential
equation (ODE) is a differential equation involving a function, or functions, of only one
variable. If the ODE involves the nth (and lower) derivatives it is said to be an nth order
ODE. Let y be a function of one variable x, for neatness, we will try to always use x as
the dependent variable and prime for derivative. An equation of the form

h1(x, y(x), y′(x)) = 0 (1)

is a first order ODE.
h2(x, y(x), y′(x), y′′(x)) = 0 (2)

is second order. A function satisfying the ODE is called a solution of the ODE.

Linear ODEs (2 types)

There are two types of linear ODEs

1. Homogeneous: If y1 and y2 are solutions so is Ay1 + By2 where A and B are
arbitrary constants.

2. Inhomogeneous: If y1 and y2 are solutions so is Ay1 + By2 where A + B = 1.

where, obviously, the point is in a homogeneous equation, all the terms are y terms, whereas
the inhomogeneous equation has an extra forcing term.

• Homogeneous example: The equation

y′′ + p(x)y′ + q(x)y = 0 (3)

is homogeneous, where p(x) and q(x) are some, given, functions of x. Now substitut-
ing Ay1 + By2 gives

(Ay1+By2)
′′+p(Ay1+By2)

′+q(Ay1+By2) = A(y′′
1 +py′

1+qy1)+B(y′′
2 +py′

2+qy2) = 0
(4)

when y1 and y2 are solutions.

• Inhomogeneous example: The equation

y′′ + p(x)y′ + q(x)y = f(x) (5)
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is homogeneous, where p(x), q(x) and f(x) are some, given, functions of x. Now
substituting Ay1 + By2 gives

(Ay1+By2)
′′+p(Ay1+By2)

′+q(Ay1+By2) = A(y′′
1+py′

1+qy1)+B(y′′
2+py′

2+qy2) = (A+B)f
(6)

when y1 and y2 are solutions. Hence Ay1 + By2 is a solution is A + B = 1.

The general first order linear ODE, for a single function, can be written

a(x)y′(x) + b(x)y(x) = f(x) (7)

where a, b and f(x) are arbitrary functions. The equation is homogeneous if f = 0. A
common standard form is write the equation as

y′(x) + p(x)y(x) = f(x) (8)

where p = b/a and f/a has been renamed back to f .
The general 2nd order linear ODE is

a(x)y′′(x) + b(x)y′(x) + c(x)y(x) = f(x) (9)

where a, b, c and f are arbitrary functions and the equation is homogeneous if f = 0.
Again, another standard form is

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) (10)

First order linear differential equations.

All solutions of
y′(x) + p(x)y(x) = f(x) (11)

can be written
y(x) = Cy1(x) + yp(x) (12)

where y1(x) is a solution of the corresponding homogeneous equation y′(x)+p(x)y(x) = 0
and yp(x) is one solution of the full equation. This can be demonstrated by explicit
construction.

y′(x) + p(x)y(x) = f(x) (13)

can be rewritten
d

dx
eI(x)y(x) = eI(x)f(x) (14)

where

I(x) =

∫ x

a

dzp(z). (15)
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and, here, a is an arbitrary constant. Now, I ′(x) = p(x) and I is called an integrating
factor. Integrate from a to x

eI(x)y(x) − eI(a)y(a) =

∫ x

a

dzeI(z)f(z). (16)

with eI(a) = 1. This gives
y(x) = Cy1(x) + yp(x), (17)

with y1(x) = e−I(x), yp(x) = e−I(x)
∫ x

a
dzeI(z)f(z) and C = y(a). In practise, this method

will always find a solution, but, often, it is quicker just to stare at the equation and then
guess a solution and check it works.

• Example Find all solutions of the ODE 1

y′(x) +
1

x
y(x) = x3. (18)

Here p(x) = 1/x which has a non-integrable singularity at x = 0! Work with x > 0,
or x < 0. First, the integrating factor I(x) =

∫

dxp(x) = logx + c. Set c = 0, or
a = 1. eI(x) = x so that the ODE can be written

d

dx
(xy) = x4. (19)

Integrating gives xy = 1
5
x5 + C or y = 1

5
x4 + C/x, that is y1(x) = 1/x, yp(x) = 1

5
x4.

Second order case

All solutions, or the general solution of

y′′(x) + p(x)y′(x) + q(x)y(x) = f(x) (20)

are given by
y(x) = C1y1(x) + C2y2(x) + yp(x) (21)

where y1, y2 are linearly independent solutions of the corresponding homogeneous equa-
tion

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (22)

and yp(x) is a solution of the full equation. C1 and C2 are arbitrary constants. This isn’t
proved here, but it is easy to understand why it would be the case: this is a second order
equation so it nears to arbitrary constant, in the initial value problem, one matches y(0)
and the other y′(0). Now, if you have a solution, adding a solution of the corresponding
homogeneous problem gives you another solution and the homogeneous problem also has
a two-dimensional space of solutions, so it all mathes up. yp(x) is called a particular
integral. The general solution is sometimes written

y(x) = yc(x) + yp(x) (23)

where yc(x) = C1y1(x)+C2y2(x) is called the complementary function. It is the general
solution of the homogeneous form of the ODE.
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Constant Coeffcients

We now consider the special case where the coefficients a, b and c are constants

ay′′(x) + by′(x) + cy(x) = f(x). (24)

This type of equation has a nice interpretation as a damped/driven oscillator where
we will use t instead of x as the variable, since it is time. y is the displacement from
equilibrium. Recall the equation for a simple harmonic oscillator

d2y(t)

dt2
= −ω2y(t) (25)

Now add in a damping force proportional to the velocity dy/dt and a driving force f(t),
which may be periodic or non-periodic,

d2y(t)

dt2
= −ω2y(t) − γ

dy(t)

dt
+ d(t) (26)

which is a linear ODE with constant coeffcents.
So, back to the general constant coefficient form with x as the variable, the first step

in solving ODEs of this type is to find two solutions of the homogeneous equation

ay′′(x) + by′(x) + cy(x) = 0. (27)

This equation has simple exponential solutions of the form y(x) = eλx . Differentiating
y′(x) = λeλx and y′′(x) = λ2eλx so that

ay′′(x) + by′ + cy = (aλ2 + bλ + c)y (28)

which is zero provided
aλ2 + bλ + c = 0. (29)

This is called an auxiliary equation. Thus y1(x) = eλ1x and y2(x) = eλ2x where λ1 and
λ2 are roots of the quadratic auxiliary equation. The complementary function, if λ1 6= λ2,
is yc(x) = C1e

λ1x + C2e
λ2x.

If λ1 = λ2 we only have one exponential solution. In this case a second solution of the
ODE is y(x) = xeλ1x and yc(x) = C1e

λ1x + C2xeλ1x. In the oscillator model this special
case corresponds to critical damping. This trick is justified by the fact it works; there are
ways to derived it, for example, by converting the equation into two first order equations
using y1 = y and y2 = y′ and then diagonalizing the corresponding matrix equation and
solving using an integrating factor. In practise, the easiest thing is to keep adding powers
of x until you have two solutions.

• Example: y′′+3y′+2y = 0 has auxiliary equation λ2+3λ+2 = 0 with roots λ1 = 1,
λ2 = 2 so the general solution is

y(x) = C1e
x + C2e

2x (30)

This corresponds to over damping.
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• Example: y′′ + 2y′ + y = 0 has auxiliary equation λ2 + 2λ + 1 = 0 with two equal
roots λ = 1 and so the general solution is

y(x) = (C1 + C2x)ex (31)

• Example: If the auxiliary equation λ2 +λ+1 = 0 with complex roots λ = 1
2
± 1

2

√
3i

the general complex solution is

y(x) = C1e
− 1

2
x+i 1

2

√
3x + C2e

− 1

2
x−i 1

2

√
3x (32)

where C1 and C2 are complex constants. The general real solution can be obtained
by imposing the constraint C2 = C̄1 :

y(x) = e−
1

2
x

[

C1

(

cos
1

2

√
3x + i sin cos

1

2

√
3x

)

+ c.c.

]

(33)

Writing C1 = 1
2
(A − iB) where A and B are real constants gives

y(x) = e−
1

2
x

(

A cos
1

2

√
3x + B sin

1

2

√
3x

)

(34)

this is the underdamped case, it still oscillates.
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