Note L4¹ 4 October

Line and surface integrals

For a vector field there are *natural* ways of integrating over one and two-dimensional subspaces of \mathbb{R}^3 to get a number, rather than a vector. These are line and surface integrals.

Line integrals

Consider two points P_1 and P_2 joined by a smooth or piecewise smooth curve C (Picture I.4.1). A small segment of C can be represented by a vector $\delta \mathbf{l}$, meaning that for two proximate points on the curve at \mathbf{x}_1 and \mathbf{x}_2 with $\delta \mathbf{l} = \mathbf{x}_2 - \mathbf{x}_1$ then all the points on the curve between \mathbf{x}_1 and \mathbf{x}_2 are close to the straight line $\mathbf{x}_1 + t\delta \mathbf{l}$ where $0 \le t \le 1$. Anyway, the idea of the line integral is that it is the limit of the sum

$$\mathcal{L} = \sum_{k=0\cdots N-1} \mathbf{F}(\mathbf{x}_k) \cdot \delta \mathbf{l}_k \tag{1}$$

where $\mathbf{x}_0 = P_1$, $\mathbf{x}_N = P_2$, the other x_k are intermediate points on the curve and $\nabla \mathbf{l}_k = \mathbf{x}_{k+1} - \mathbf{x}_k$ where the limit is the infinitesimal limit where N becomes infinite and all the lengths of the $\nabla \mathbf{l}$ go to zero. With a bit of effort and a lot of fiddling, this can be made into a rigorous definition, but the important idea is that the line integral

$$\int_{C} \mathbf{F} \cdot \mathbf{dl} \tag{2}$$

is the integral along the curve of the projection of \mathbf{F} onto the tangent. Note that this definition *orients* C, reversing the orientation reverses the sign of the integral.

The obvious physical example is work against a force: the work done moving a particle from P_1 to P_2 along the curve C against a position dependent force $\mathbf{F}(x,y,z)$ is the line integral $\int_{\mathbb{R}} \mathbf{F} \cdot \mathbf{dl}$.

In practise the line integral is usually calculated using a parametric form of the formula. Suppose the points on C are given by $\mathbf{x}(u)$ where u is a parameter, a real number, and it runs from a to b so $\mathbf{x}(a) = P_1$ and $\mathbf{x}(b) = P_2$. In other words there is a map

$$\begin{bmatrix} a, b \end{bmatrix} & \hookrightarrow & \mathbf{R}^3 \\
 u & \to & \mathbf{x}(u)$$
(3)

Now, by Taylor,

$$\mathbf{x}(u + \delta u) \approx \mathbf{x}(u) + \frac{d\mathbf{x}}{du}\delta u$$
 (4)

so we can identify

$$\delta \mathbf{l} \leftrightarrow \frac{d\mathbf{x}}{du} \delta u$$
 (5)

and can conclude that

$$\int_{C} \mathbf{F} \cdot \mathbf{dl} = \int_{a}^{b} du \mathbf{F}(\mathbf{x}(u)) \cdot \frac{d\mathbf{x}(u)}{du}$$
(6)

• Example Integrate the vector field

$$\mathbf{F} = \frac{1}{2}y\mathbf{i} - \frac{1}{2}x\mathbf{j} \tag{7}$$

over the semi-circular arc of unit radius in the z=0 plane. (Picture I.4.2). So, to get a parameterization of the curve take

$$x(u) = \cos u$$

$$y(u) = \sin u$$

$$z(u) = 0$$
(8)

with $0 \le u \le \pi$. Now,

$$\frac{d\mathbf{x}(u)}{du} = -\sin u\mathbf{i} + \cos u\mathbf{j} \tag{9}$$

and substituting for x and y in the formula for \mathbf{F} we get

$$\mathbf{F} = \frac{1}{2}\sin u\mathbf{i} - \frac{1}{2}\cos u\mathbf{j} \tag{10}$$

so that

$$\mathbf{F} \cdot \frac{d\mathbf{x}(u)}{du} = -\frac{1}{2}\sin^2 u - \frac{1}{2}\cos^2 u = -\frac{1}{2}$$
 (11)

so

$$\int_{C} \mathbf{F} \cdot \mathbf{dl} = -\frac{1}{2} \int_{0}^{\pi} du = -\frac{\pi}{2}$$
 (12)

Conservative vector fields and path independence

• **Definition**: A vector field is called **conservative** if it is the gradient of a scalar field, so **F** is conservative if $\mathbf{F} = \nabla \phi$ for some ϕ .

If $\operatorname{curl} \mathbf{F} \neq 0$ then **F** cannot be conservative, however, the converse need not hold.

• **Definition**: A vector field is called **path independent** if the line integral between any two points is the same for any path.

Any conservative field is path-independent: choose any smooth curve joining points P_1 and P_2 parameterized by $u \in [a, b]$, then

$$\mathbf{F} \cdot \frac{d\mathbf{x}}{du} = \frac{\partial \phi}{\partial x} \frac{dx}{du} + \frac{\partial \phi}{\partial y} \frac{dy}{du} + \frac{\partial \phi}{\partial z} \frac{dz}{du} = \frac{d\phi(\mathbf{x}(u))}{du}$$
(13)

¹Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231

so by the Fundamental Theorem of Calculus

$$\int_{C} \mathbf{F} \cdot \mathbf{dl} = \phi(\mathbf{x}(b)) - \phi(\mathbf{x}(a)) \tag{14}$$

and this answer does not depend on the path.

Now, for a conservative field, let C_a and C_b be two curves with the same endpoints P_1 and P_2 (Picture I.4.3). Since a conservative field is path independent,

$$\int_{C_a} \mathbf{F} \cdot \mathbf{dl} = \int_{C_b} \mathbf{F} \cdot \mathbf{dl} \tag{15}$$

Now consider the closed curve $C=C_a-C_b$ where the minus in C_b means we have reversed the orientation.

$$\oint_C \mathbf{F} \cdot \mathbf{dl} = \int_{C_a} \mathbf{F} \cdot \mathbf{dl} - \int_{C_b} \mathbf{F} \cdot \mathbf{dl} = 0$$
 (16)

and for any closed curve C

$$\oint_C \mathbf{F} \cdot \mathbf{dl} = 0 \tag{17}$$

• Example: Back to the previous example of the semicircle. It is easy to extend the calculation to the full closed circle to show

$$\oint_C \mathbf{F} \cdot \mathbf{dl} = -\frac{1}{2} \int_0^{2\pi} du = -\pi \tag{18}$$

SO

$$\mathbf{F} = \frac{1}{2}y\mathbf{i} - \frac{1}{2}x\mathbf{j} \tag{19}$$

cannot be conservative. This is consistent with $\operatorname{curl} \mathbf{F} = -\mathbf{k} \neq 0$.

In fact, for a continuous vector field ${\bf F}$ in an open and connected domain D, the following are equivalent

- F is conservative.
- 2. $\oint_C \mathbf{F} \cdot \mathbf{dl} = 0$ for all closed paths in D
- 3. **F** is path independent.

We have already seen that (2) and (3) are equivalent and that (1) implies (3), to finish, then, we need only prove (3) implies (1). Let P be any point in D and let

$$\phi(\mathbf{x}) = \int_{C(P,\mathbf{x})} \mathbf{F} \cdot \mathbf{dl} \tag{20}$$

where $C(P, \mathbf{x})$ is any curve joining P and \mathbf{x} . Since the line integral is path independent, ϕ is uniquely defined. Now, we want to show that $\mathbf{F} = \nabla \phi$. Again, the result is path independent, so, to prove

$$F_1 = \partial_r \phi \tag{21}$$

we use a path that goes from P to P' = (x', y, z) where P' is chosen so that the straight line segment from P' to (x, y, z) is in D (Picture I.4.4). Now

$$\phi(\mathbf{x}) = \int_{C(P,P')} \mathbf{F} \cdot \mathbf{dl} + \int_{x_1}^{x} \mathbf{F} \cdot \mathbf{dl}$$
 (22)

so

$$F_1 = \partial_x \phi \tag{23}$$

The other components follow by a similar trick.

If D is **simply connected** all loops are contractile (Picture I.4.5). In this case $\operatorname{curl} \mathbf{F} = 0$ is sufficient for \mathbf{F} to be conservative, that is, on simply connected domains, irrotational implies conservative. This will be proved later using the Stokes theorem.