
Note I.21 4 October 2006

Three dimensions

The three-dimensional case is a straight-forward extension of the two-dimensional analysis.
The Cartesian iterated integral has the form

∫

D

dV φ =

∫ b

a

dx

∫ d(x)

c(x)

dy

∫ f(x,y)

e(x,y)

dzφ(x, y, z) (1)

where z = e(x, y) and z = f(x, y) describe the upper and lower surfaces bounding the
domain D (Picture I.2.1). The general coördinate transform

x = x(u, v, w)
y = y(u, v, w)
z = z(u, v, w) (2)

has
dxdydz = Jdudvdw (3)

where the Jacobian is
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(4)

Of course this formula is more general than this, it applies for any transformation between
coördinate systems.

Two commonly used coördinate systems are spherical polar coördinates and cylin-

drical polar coördinates. The spherical polar coördinates are r, θ and φ where r is the
distance from the origin, θ, called the polar angle, is the angle distended with the z-axis
and φ, called the azimuthal angle, is the angle the projection onto the xy-plane makes
with the x-axis (Picture I.2.2). The spherical polars are related to Cartesians by

x = r sin θ cos φ

y = r sin θ sin φ

z = r cos θ (5)

and J = r2 sin θ. The polar coördinates are z, ρ and φ, z is the distance along the z-axis,
as usual, ρ is the length of the projection on the xy-plane and φ is the angle the projection
distends with the x-axis (Picture I.2.3), they are related to the Cartesians by

x = ρ cos φ

y = ρ sin φ

z = z (6)

and the Jacobian is J = ρ.

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
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• Example: A ball of radius a has a cylindrical hole of radius b < a drilled though its
center, what is its volume? Well try cylindrical polars with the z-axis corresponding
to the axis of the hole (Picture I.2.4). Now to integrate over the remaining material
we need to work out the ranges for the various coördinates. Obviously 0 ≤ φ ≤ 2π, by
trigonometry, at z ρ =

√
a2 − z2 and the sphere and the cylinder touch when ρ = b,

which happens when z = ±
√

a2 − b2, hence b ≤ ρ ≤
√

a2 − z2 and −
√

a2 − b2 ≤ z ≤√
a2 − b2 and the iterated integral is

V =

∫

V

dV =

∫ 2π

0

dφ

∫

√
a2−b2

−
√

a2−b2
dz

∫

√
a2−z2

b

dρρ (7)

where the final ρ is the Jacobian. Now, we can do this integral

∫ 2π

0

dφ

∫

√
a2−b2

−
√

a2−b2
dz

∫

√
a2−z2

b

dρρ = 2π

∫

√
a2−b2

−
√

a2−b2
dz

a2 − z2 − b2

2

= π

[

(a2 − b2)z − z3

3

]
∣

∣

∣

∣

z=
√

a2−b2

z=−
√

a2−b2

=
4π

3
(a2 − b2)3/2 (8)

Vector fields

A scalar field, defined already, maps points in R3 to real numbers; now we define

• Definition: A vector field is a mapping

F : D → R3 (9)

where D is a subset of R3

so a vector field maps points in R3 to three-dimensional vectors.

• Example:
F = (xy, y2, z) (10)

also written
F = xyi + y2j + zk (11)

is a vector field, where we have used the usual basis

i = (1, 0, 0)
j = (0, 1, 0)
k = (0, 0, 1) (12)

Physical examples include the electric and magnetic fields, E and B in electromag-
netism and the fluid velocity u(x, y, z) in a fluid.
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Vector calculus

Now, the issue is how to define the derivatives of scalar and vector fields. In practice, there
are three differential operators used; these will be defined and, hopefully, by looking at
examples it will become clearer as to why these particular operators are the ones that are
important for physically and mathematically.

• Definition: The gradient of a scalar field φ is the vector field

gradφ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k (13)

so gradient is a map

grad : scalar fields 7→ vector fields

φ → gradφ =
∂φ

∂x
i +

∂φ

∂y
j +

∂φ

∂z
k (14)

It is common and useful to also use the symbolic notation

grad φ = ∇φ (15)

where ∇, called nabla is the vector operator

∇ =
∂

∂x
i +

∂

∂y
j +

∂

∂z
k (16)

Hence, for example,

• Example: The gradient of the scalar field φ(x, y, z) = xy + y cos z is

gradφ = yi + (x + cos z)j − y sin zk (17)

and physical examples include the force on a particle

F = −∇V (18)

in a potential energy field V (x, y, z).

Probably the easiest way to understand the gradient is to relate it to the directional
derivative; it is easy to see that a sensible definition of the derivative of φ is the direction
given by a unit vector ê = (e1, e2, e3) is

Dêφ := lim
h→0

φ(x + hê) − φ(x)

h
(19)

but, by expanding φ(x + hê) = φ(x + he1, y + he2, z + he3) using the Taylor expansion

Dêφ = ê · ∇φ (20)

Obviously this is maximum for ê in the same direction as ∇φ so the direction of gradient
gives the direction that φ has its greatest variation in and the length of the gradient is
the directional derivative in that direction. Similarly, the gradient of φ is perpendicular to
the level surfaces of φ, so grad φ is perpendicular to the surface φ =constant. Finally, we
define
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• Definition: The stationary points of a scalar field are points where the gradient
of the field is zero.

The remaining two differential operators act on vector fields, the divergence, sends a
vector field to a scalar field and, we will see, the curl sends a vector field to another vector
field.

• Definition: The divergence of a vector field F = F1i + F2j + F3k is

divF :=
∂F1

∂x
+

∂F2

∂y
+

∂F3

∂z
(21)

or in the symbolic notation
div F = ∇ · F (22)

Hence

div : vector fields 7→ scalar fields
F → divF = ∇ · F (23)

So for example

• Example: The divergence of the vector field F = (xy, sin z, z) is divF = 1 + y.

We will see that it is significant when a vector field has no divergence and

• Definition: A vector field is called solenoidal if it has a zero divergence.

In electromagnetism the magnetic field B is solenoidal by the Maxwell equations and in
fluid flow the continuity equation for an incompressible liquid has a solenoidal velocity
field. In fact, the continuity equation is a good way of getting a handle on how the
divergence works, consider a compressible fluid with density field ρ(x, y, z; t) and velocity
field u(x, y, z; t), at a given time t and at a given point (x, y, z) ρ gives the density of
the fluid and u gives its velocity. The field ρu is the mass transport and the continuity
equation is

∂ρ

∂t
= −div (ρu) (24)

so the amount of fluid at a point changes according to the divergence of the mass transport
field, hence, roughly speaking we can think of the divergence as giving the net accumulation
of the vector field at the point.

4


