
Part I

231 Part IV Partial Differential
Equations

1 Some linear PDEs involving a scalar field φ

(aka the Equations of Mathematical Physics)

i)
∇2φ = 0 Laplace’s equation (elliptic)

ii)
∇2φ = ρ Poisson’s equation (elliptic)

φ is some scalar field usually called a source term

iii)
(∇2 + k2)φ = 0 Helmholtz equation (elliptic)

(∇2 − k2)φ = 0 ’wrong sign’ Helmholtz

k is a real constant

iv)

∇2φ = D
∂φ

∂t
Heat/diffusion equation (parabolic)

D a constant, φ = φ(~r, t) time-dependent

v)

∇2φ−
1

c2
∂2φ

∂t2
= 0 Wave equation (hyperbolic)

c = speed of sound / light

Laplacian ∇2 = ∇.∇ = div grad =
d2

dx2
+

d2

dy2
+

d2

dz2
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2 Heat/Diffusion Equation

Image some material where the temperature is not constant but with no sources (or sinks)
of heat.
Temperature is a scalar field φ(~r, t). Heat current ~j(~r, t) is a vector field s.t. energy flux
across an oriented surface S.

INSERT IMAGE OF A VECTOR ~n OUT OF A SURFACE S

is the surface integral
∫

S
~j(~r, t) ~dA

Let S be a closed (but static) surface. Heat flux out of S

=

∫

S

~j(~r, t) ~dA

= − rate of change of energy in D

INSERT IMAGE HERE

= −α
∂

∂t

∫

D

φ(~r, t)dV

= −α

∫

D

∂φ

∂t
(~r, t)dV

α constant (heat capacity per unit volume)

Apply Gauss’ theorem
∫

S

~j(~r, t). ~dA =

∫

D

div ~jdV

so that
∫

D

( div ~j + α
∂φ

∂t
)dV = 0

where D is any 3d region with a smooth boundary. Thus

div ~j + α
∂φ

∂t
= 0

Assume ~j = −β grad φ
where β is the thermal conductivity constant
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and the - sign indicates that the heat flows from hot to cold regions

∇2φ = D
∂φ

∂t
with D =

α

β

Laplace’s Equation is a special case of Poisson’s equation and the heat equation

Poisson ρ = 0 ⇒ no source ⇒ ∇2φ = 0

Heat
∂φ

∂t
= 0 ⇒ steady state ⇒ ∇2φ = 0

3 Boundary Value Problems

Often wish to solve a PDE subject to some boundary conditions.
Assume φ satisfies some PDE (e.g. Laplace’s equation) in a 3d region D with boundary

S = ∂D

INSERT IMAGE

3.1 3 basic kinds of b.c.s.

i) φ is given on S → Dirichlet boundary conditions

ii) ∂nφ = ~n.∇φ (directional derivative in direction of unit normal ~n) is given on S →
Neumann boundary conditions

iii) φ and ∂nφ are given on S → Cauchy boundary conditions

Can also have mixed b.c.s. where on different parts of S different b.c.s are imposed

This is not exhaustive since there are other types of b.c.s. such as periodic boundary
conditions.

3.2 Elliptic Case

Usually the Cauchy b.c.s. are too strong, i.e. no solutions.
Dirichlet b.c.s. more or less lead to a unique solution.
Neumann b.c.s. lead to a unique solution (up to an arbitrary constant in Laplace/Poisson
cases).

3.3 Other cases (parabolic and hyperbolic)

more complicated.

3

4 Laplace’s Equation

A solution of Laplace’s equation is called a harmonic function.
Some simple (singular) examples:

3d φ = 1

r
is harmonic but singular at the origin.

2d φ = log r, r =
√

x2 + y2 harmonic but singular at r = 0.

1d φ = x is harmonic but singular at ±∞.

2d Any holomorphic function ( Complex Analysis ) is harmonic!

Suppose we wish to find a non-singular (e.g. C∞) harmonic function is some domain D
subject to some boundary conditions on S = ∂D.

4.1 Theorem: Uniqueness of solns to DBCs and NBCs

The solution of Laplace’s equation under Dirichlet’s boundary conditions (DBCs), if it
exists, is unique. The solution of the problem under Neumann boundary conditions, if it
exists, is unique up to an additive constant.

4.1.1 Proof

postponed; digression on vector analysis required.

4.1.2 Green’s Identities

(not to be confused with Green’s theorem in the plane) Let φ and ψ be smooth functions,
(not necessarily harmonic)

Green’s 1st Identity

∫

D

(φ∇2ψ + ∇φ.∇ψ)dV =

∫

S=∂D

φ∇ψ. ~dA
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Green’s 2nd Identity

∫

D

(φ∇2ψ − ψ∇2φ)dV =

∫

S=∂D

(φ∇ψ − ψ∇φ). ~dA

Proofs

1st identity. Apply Gauss’ theorem to the vector field ~F = φ∇ψ

div ~F = φ∇.(∇ψ) + ∇φ.∇ψ

vector identity

= φ∇2ψ + ∇φ.∇ψ

2nd identity. Interchange φ and ψ in first identity the subtract from the first identity.

4.1.3 Proof of uniqueness Theorem

Let φ1 and φ2 be harmonic in D and subject to the same boundary conditions on S = ∂D

(either DBCs or NBCs). Consider φ = φ1 − φ2. Apply Green’s 1st identity taking ψ = φ

∫

D

(φ∇2ψ + ∇φ∇ψ)dV =

∫

φ∇φ. ~dA

= 0 (since φ = φ1 − φ2 is harmonic) =

∫

∂nφdA

= 0 for DBCs ( φ = 0 )

= 0 for NBCs ( ∂nφ = 0 )

Therefore
∫

D

∇φ.∇φdV = 0

and ∇φ.∇φ is non-negative!
which requires ∇φ = 0 or φ = constant i.e. φ1−φ2 = c proving the theorem for NBCs.

DBCs: c must be zero since φ1 and φ2 agree on S by assumption.

END FIRST THREE LECTURES

START SECOND THREE LECTURES
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5 Gauss’ Mean Value Theorem

for Harmonic Functions

INSERT IMAGE

Suppose φ is harmonic in D ⊂ R3. The average value of φ over the surface of a sphere of
radius R centred at the point ~r is φ(~r).

5.0.4 Note.

This is true for any point in the interior of D. The radius R is any number s.t. the sphere
(and every point inside it) is in D.

5.0.5 Proof

Without loss of generality consider a sphere centred at the origin. Idea is to show that the
average

φ̄R =
1

4πR2

∫

x2+y2+z2=R2

φdA

is independent of the radius R.
Apply Green’s 2nd identity to φ and ψ = 1

r
in the regions R1 < r < R2

INSERT IMAGE

∫

R1<r<R2

(φ∇2 1

r
−

1

r
∇2φ)dV

=

∫

r=R2,out

(φ∇
1

r
−

1

r
∇φ). ~dA−

∫

r=R1,out

(φ∇
1

r
−

1

r
∇φ). ~dA

Now,
∫

r=R1,out

1

r
∇φ. ~dA =

1

R1

∫

r=R1,out

∇φ. ~dA

because 1

r
is constant of sphere r = R1

=
1

R1

∫

r<=R1

div∇φdV

=
1

R1

∫

r<=R1

∇2φdV = 0
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Similarly

∫

r=R2,out

1

r
∇φ. ~dA = 0

Thus,

0 =

∫

r=R2,out

φ∇
1

r
. ~dA−

∫

r=R1,out

φ∇
1

r
. ~dA

∇
1

r
= −

~̂r

r2
in both integrals~n = ~̂r

0 = −
1

R2
2

∫

r=R2

φdA+
1

R2
1

∫

r=R1

φdA

or ¯φR2
= ¯φR2

Letting R → 0, φ̄R = φ(0), R being the radius of the outer sphere.

6 Maximum (minimum) Principle

for Harmonic Functions
Let φ be harmonic in a 3d (or 2d) domain D. Then φ never assumes its maximum (or

minimum) value at an interior point of D unless φ is constant.

6.0.6 Proof

Assume φ has a maximum at some point P in the interior of D. For R sufficiently small
the sphere of radius R centred at P is inside D. For every point on the sphere φ < φ(P ) so
φ̄R < φ(P ) contradicting the MVT. A similar argument holds if P is a minimum.

If φ is harmonic in D it assumes its maximum and minimum values at the boundary
S = ∂D

6.1 Physical Interpretation

Heat Equation ∇2 = D ∂φ

∂t
. If φ reaches a steady state ∂φ

∂t
= 0, then ∇2φ = 0, i.e. the

temperature is harmonic. Suppose we have a finite lump of matter and the boundary
temperature (not necessarily constant) is fixed, e.g. consider a square slab with three sides
fixed to be at 0 degrees and the other at 100 degrees. The steady state temperature inside
the slab is harmonic. Steady state temperature can never exceed 100 degrees (or fall below
0 degrees); heat would immediately flow out of (or enter) such a hot spot (or cold spot).

SQUARE HEAT IMAGE
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7 Liouville’s Theorem

If φ is harmonic and bounded throughout R3 (or R2) then it is constant.

7.0.1 Proof

Not given.

7.0.2 Note

φ = 1

r
3d φ = log r (2d) are unbounded.

7.1 Liouville’s Theorem - Complex Analysis Version

If f is holomorphic throughout C (sometimes called an entire function) and bounded
|f | < C then f is constant.

7.2 Solutions

Uniqueness theorem very powerful; any solution with DBCs, however simple is the only
solution.

7.3 Examples

7.3.1 Example i

INSERT IMAGE

Let φ be a harmonic function which is constant, say φ = a, on the boundary of D.
φ(~r) = a is trivially a solution of Laplace’s equation with the correct b.c.s.. It must be the
unique solution to this boundary value problem.

7.3.2 Example ii

Let φ be harmonic in a 2d annulus with φ = 1 on the other boundary (r = R2) φ = b on
the inner boundary (r = R1)

INSERT IMAGE

φ = C log r +D (r =
√

x2 + y2) harmonic but singular at origin,
C, D constants.

a = φ(r = R2) = C logR2 +D
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b = φ(r = R1) = C logR1 +D

a− b = C log
R2

R1

D = a− C logR2

φ =
a− b

log R2

R1

log rR2 + a

In these 2 examples we have guessed a solution (which we know to be unique).
This is clearly insufficient for most problems, e.g. the square where φ is zero on three

sides, and another value, say 1, on the remaining side.

Insert Image

8 Separation of Variables

(a more systematic approach to solving linear PDEs)
Idea is to reduce PDEs involving 2 or more variables to ODEs in each variable.

Try φ(x, y) = X(x)Y (y)

where X depends on x only and Y depends on y only. Laplace’s equation becomes

∇2φ = X ′′(x)Y (y) +X(x)Y ′′(y) = 0

divide through by X(x)Y (y)

X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
= 0

with the first term independent of y and the second independent of x.

Therefore,
X ′′(x)

X(x)
= −

Y ′′(y)

Y (y)
= constant independent of x and y

3 possibilities constant i) positive, ii) zero, iii) negative.
i)

X ′′(x)

X(x)
= −

Y ′′(y)

Y (y)
= k2 2 ODEs, k constant

X ′′(x) = k2X(x) Y ′′(y) = −k2Y (y)
with solutions with solutions
X(x) = ekx, e−kx Y (y) = sin ky, cos ky
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For each k 4 independent solutions of Laplace’s equation
φ = ekx sin ky, ekx cos kye−kx sin ky, e−kx cos ky
ii) constant= 0

X ′′(x) = 0; Y ′′(y) = 0;
X(x) = Ax+B Y (y) = Cy +D

⇒ 4 independent solutions of Laplace’s equation

iii) constant negative

X ′′(x)

X(x)
= −

Y ′′(y)

Y (y)
= −k2

X(x) = sin kx, cos kx Y (y) = eky, e−ky

For each k 4 solutions

φ = sin kx, eky, sin kx, e−ky, cos kx, eky, cos kx, e−ky

Lots of solutions! None of these satisfy the b.c.s. for one square problem, however we
can implement left and right b.c.s.

φ(0, y) = φ(π, y) = 0

solutions (from iii) ) sin kxeky and sin kxe−ky

satisfy left and right b.c.s. if k is an integer.
Consider a linear combination of these solutions

φ(x, y) =
∞

∑

n=1

sinnx(bne
ny + b̃ne

−ny)

Now try to find bn and b̃n such that upper and lower b.c.s. are satisfied.

8.0.3 Upper boundary condition

0 = φ(x, π) =

∞
∑

n=1

sin nx(bne
nπ + bne

−nπ)

This is satisfied if

bne
nπ + b̃ne

−nπ = 0 for all n.
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8.0.4 Lower boundary condition

φ(x, 0) =

∞
∑

n=1

sinnx(bn + b̃n) =? 1

1 is even while the sines are odd. Recall

f(x) = 1 0 < x < π − 1 − π < x < 0

has the Fourier Series expansion

f(x) =
4

π

∑

n odd >0

1

n
sin nx

Restricting to 0 < x < π we have

1 =
4

π

∑

n odd >0

1

n
sinnx

half-range sine series

Set bn + b̃n =
4

πn
n odd 0 n even

bn =
4

πn(1 − e2πn
n odd 0 n even

φ(x, y) =
4

π

∑

n odd >0

sinnx

n

eny

e2πn − 1

9 Half-range Sine Series

An even function f can be expanded in sine waves over a half-period
Suppose f(x+ 2π) = f(x), f(−k) = f(k)
The function f odd defined as

fodd(x) =
f(x), 0 < x < π

−f(x), − π < x < 0

is odd and agrees with f(x) for o < x < π. The usual Fourier expansion of fodd contains
only sines

f(x) =
∞

∑

n=1

bn sin nx 0 < x < π

11

bn =
2

π

∫ π

0

dx sinnxf(x)

(true if f odd, even or neither)
This is known as a half-range Fourier sine series. If f is odd it coincides with the usual

Fourier series.
In Q2 of problem sheet 19 the cosine must be expanded as a sine series.
Back to our square boundary value problem.

Insert Image

Lines of constant φ must converge at the two lower corners.

Insert Image

Closed loops of constant φ do not occur – uniqueness theorem would force φ to be
constant inside any such loop.

Other constant boundary conditions:

Insert Image

a, b, c, d constant
can be dealt with through linear combinations of the basic a = 1, b = c = d = 0 square

and similar solutions

Insert Image

interchange x, and y in a = 1, b = c = d = 0 solution

Insert Image

x→ 1 − x in previous solution
φ = constant is also a solution.
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9.1 Periodic Strip

Periodic in x direction π(x + 2π, y) = φ(x, y) and y in some finite range, say 0 ≤ y ≤ 1
with DBCs at y = 0 and y = 1.

Insert Image

φ(x, y = 1) = g(x) g(x+ 2π) = g(x)
φ(x, y = 0) = f(x) f(x+ 2π) = f(x)
separation of variables:
φ(x, y) = X(x)Y (y)
Solutions (must be periodic in x)
X(x) = cosnx or sinnx Y (y) = eny or e−ny

and X(x) = A +Bx Y (y) = C +Dy

B = 0 periodicity
(redefine k1 = AC, k2 = AD)

φ(x, y) = k1 + k2y +
∞

∑

n=1

(

ane
ny + ãne

−ny
)

cos nx+
∞

∑

n=1

(

bne
ny + b̃ne

−ny
)

sin nx

Obtain coefficients k1, k2, an, ãn, bn, b̃n through boundary conditions at y = 0, and
y = 1.

Note that separation of variables in Cartesian coordinates is not always possible and
even when it is, it is not always useful (if the boundary conditions are not suited).

10 Seperation of Variables in other Coordinate Sys-

tems

In situations with circular symmetry polar coordinates are advantageous. Separation of
variables in polar coordinates

φ(r, θ) = R(r)Θ(θ)

But to solve, for example, Laplace’s equation require Laplacian in these coordinates

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2

For more compliacated coordinate systems, e.g. spherical polars, this becomes messy
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10.1 Curvilinear Coordinates

Consider a general change of coordinates

x = x(u1, u2, u3)

y = y(u1, u2, u3) or r = r(u1, u2, u3)

z = z(u1, u2, u3)

e.g. (u1, u2, u3) = (r, θ, φ) spherical polars.
Can rewrite grad, div and curl as derivatives w.r.t. the new coordinates

gradφ =
∂φ

∂x
i+

∂φ

∂y
j +

∂φ

∂z
k

=

(

∂φ

∂u1

∂u1

∂x
+
∂φ

∂u2

∂u2

∂x
+

∂φ

∂u3

∂u3

∂x

)

i+ cyclic perms

=
∂φ

∂u1

∇u1 +
∂φ

∂u2

∇u2 +
∂φ

∂u3

∇u3

Working with other coordinate systems convenient to replace basis vectors i, j, k with
unit vectors eu1

, eu2
, eu3

pointing in the direction of increasing u1, u2, u3.
Define

eu1
=

1

hu1

∂r

∂u1

hu1
=

∣

∣

∣

∣

∂r

∂u1

∣

∣

∣

∣

eu2
=

1

hu2

∂r

∂u2

hu2
=

∣

∣

∣

∣

∂r

∂u2

∣

∣

∣

∣

eu3
=

1

hu3

∂r

∂u3

hu3
=

∣

∣

∣

∣

∂r

∂u3

∣

∣

∣

∣

(can abbreviate e1 = eu1
, e2 = eu2

etc and h1 = hu1
, h2 = hu2

etc. )

10.2 Spherical Polar Coordinates

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

∂r

∂r
= sin θ cos φi+ sin θ cosφj + cos θk
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hr =

∣

∣

∣

∣

∂r

∂r

∣

∣

∣

∣

=
√

(sin θ cosφ)2 + (sin θ sinφ)2 + cos2 θ = 1

er = sin θ cosφi+ sin θ sinφj + cos θk

=
r

r
sometimes written r̂

∂r

∂θ
= r cos θ cosφi+ r cos θ sin φj − r sin θk

hθ =

∣

∣

∣

∣

∂r

∂θ

∣

∣

∣

∣

= r

√

cos2 θ cos2 φ+ cos2 θ sin2 φ+ sin2 θ = r

eθ =
1

hθ

∂r

∂θ
= cos θ cos φi+ cos θ sinφj − sin θk

∂r

∂φ
= −r sin θ sinφi+ r sin θ cosφj

hφ =

∣

∣

∣

∣

∂r

∂φ

∣

∣

∣

∣

= r

√

sin2θ sin2 φ+ sin2 θ cos2 φ = r sin θ

eφ =
1

hφ

∂r

∂φ
= − sin φi+ cosφj

Note that the new basis vectors er, eθ and eφ are orthogonal er.eθ = eθ.eφ = eφ.er = 0
Claim The three (un-normalised) basis vectors

∂r

∂u1

,
∂r

∂u2

,
∂r

∂u3

are dual to the three gradients

∇u1,∇u2,∇u3

i.e.

∇ui.
∂r

∂uj

= δij , where δ is the Kronecker delta

Proof

∇u1.
∂r

∂u1

=
∂u1

∂x

∂x

∂u1

+
∂u1

∂y

∂y

∂u1

+
∂u1

∂z

∂z

∂u1

=
∂u1

∂u1

= 1

15

11 Orthogonal Curvilinear Coordinates

Assume basis vectors ei are orthogonal

eiej = δij

(e.g. spherical polars )
Write

∇ui.
∂r

∂uj

= δij

as

∇ui.hjej = δij

or

hj∇ui.ej = δij

This implies that ei = hi∇ui or

∇ui =
1

hi

ei ( orthogonal coord. system )

Inserting this into gradient formula

gradφ =
∂φ

∂u1

∇u1 +
∂φ

∂u2

∇u2 +
∂φ

∂u3

∇u3

=
1

h1

∂φ

∂u1

e1 +
1

h2

∂φ

∂u2

e2 +
1

h3

∂φ

∂u3

e3

For example in spherical polars (r, θ, φ) hr = 1, hθ = r, hφ = r sin θ

gradΦ =
∂Φ

∂r
er +

1

r

∂Φ

∂θ
eθ +

1

r sin θ

∂Φ

∂φ
eφ

( large Φ not to be confused with angle φ! )
A vector field F = Fxi + Fyy + Fzk can be written in terms of the ’new’ basis vectors

e1, e2, e3.

F = Fu1
eu1

+ Fu2
eu2

+ Fu3
eu3

abbreviated to

F = F1e1 + F2e2 + F3e3

For example

F =
1

r3
(xi+ yj + zk)

=
1

r2
er

or Fr = 1

r2 , Fθ = Fφ = 0
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11.0.1 Divergence and curl

Divergence of a vector field F = F1e1 + F2e2 + F3e3

÷F =
1

h1h2h3

[
∂

∂u1

(F1h2h3) +
∂

∂u2

(F2h3h1) +
∂

∂u3

(F3h1h2)]

(coord system orthogonal)
Proof Based on identity

÷
e1

h2h3

= ÷
e2

h3h1

= ÷
e3

h1h2

= 0

Write F = (F1h2h3)
e1

h2h3

+ (F2h3h1)
e2

h3h1

+ (F3h1h2)
e3

h1h2

Use ÷φG = φ÷G+ ∇φ ·G

÷F = ∇(F1h2h3) ·
e1

h2h3

+ ∇(F2h3h1) ·
e2

h3h1

+ ∇(F3h1h2) ·
e3

h1h2

∇(F1h2h3) =
e1

h1

∂

∂u1

(F1h2h3) +
e2

h2

∂

∂u2

(F2h3h1) +
e3

h3

∂

∂u3

(F3h1h2)

and similarly for ∇(F2h3h1) and ∇(F3h1h2).
Using ei · ej = δij gives result.

To prove that ÷
e1

h2h3

= 0 + cyclic perms.
write e1 = e2 × e3 (orthonormality, can be e1 = e2 × e3 )

e1

h2h3

=
e2

h2

×
e3

h3

= ∇u2 ×∇u3

Using identity

∇(̇F ×G) = (∇× F ) ·G− (∇×G) · F

∇ ·
e1

h2h3

= (∇×∇u2).∇u3 − (∇×∇u3) · ∇u2 = 0

curl grad = 0

Curl in orthogonal curv. coords.

curl F =
1

h1h2h3

∣

∣

∣

∣

∣

∣

h1e1 h2e2 h3e3
∂

∂u1

∂
∂u2

∂
∂u3

h1F1 h2F2 h3F3

∣

∣

∣

∣

∣

∣

Proof: not given
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Laplacian

∇2φ = div grad φ

= ÷ ()

= []

⇒ ∇2 =
1
[]
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