Part 111: ODEs

A differential equation is an equation involving a function (or functions) and its derivatives.
An ordinary differential equation (ODE) is a differential equation involving a function
(or functions) of one variable.
If the ODE involves the nth (and lower) derivatives it is said to be an nth order ODE.
Let y be a function of one variable (which we will always call z)
An equation of the form

ha(z, y(x),y'(x)) =0

is a rst order ODE.

ha(z, y(x),y'(2), y"(x)) = 0

is second order.
A function satisfying y(z) the ODE is called a solution of the ODE.

0.1 Linear ODEs (2 types)

i) homogeneous. If y; and yy are solutions so is Ay; + By, where A and B are arbitrary
constants.

ii) inhomogeneous. If y; and y, are solutions so is Ay; + By, where A+ B = 1.

The general 1st order linear ODE (for a single function) can be written

a(z)y'(z) + b(x)y(r) = f(z)

a, b and f are arbitrary functions. The equation is homogeneous if f = 0.
It is sometimes written in the form

y'(z) + plx)y(z) = f(2).

(p =b/a and f/a has been renamed as f )
The general 2nd order linear ODE

a(z)y"(x) + b(x)y' (x) + c(x)y(x) = f(z) (%)

1 a, b, c and f are arbitrary functions (homogeneous if f = 0).
We will sometimes write (*) in the form

y' (@) + p(a)y () + q(=)y(z) = f(z). ()

(**) looks more economical, but we will use (*) as well.



0.2 1st Order Case
All solutions of
y'(x) +p(a)y(z) = f(z)
can be written
y(x) = Cyr(z) + yp(a).
where y(x) is a solution of the homogeneous equation y'(z) + p(z)y(z) =0
and y,(z) is one solution of the full equation.

Proof

by explicit construction.

can be rewritten

where

(a is an arbitrary constant) which has the property I'(z) = p(z). I is called an inte-
grating factor. Now integrate from a to x

d“@@%ﬂ”mw=i/ché@f@)
Note that e/(® = 1. This gives

y(z) = Cyi(z) + yp(x),
with y;(z) = el yp(z) = el @) ff dzel(z)f(z) and C' = y(a).

Example

Find all solutions of the ODE 1

1
V(@) + y(e) =
Here p(x) = 1/x which has a non-integrable singularity at = 0! Work with x > 0 (or
x < 0).
I(z) = [dap(x) = logx +c. Set ¢ =0 (or a = 1). e/® =z so that the ODE can be
written

d
ﬁ(xy) =r.a® =2,
1.4

Integrating gives zy = £2° + C or y = t2* + C/z, ie. y1(x) = 1/x, yy(z) = 2.
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0.3 2nd Order Case

All solutions (or the general solution) of (*) or (**) can be written

y(r) = Cry1(x) + Coya(x) + yp().

Y1, Yo are linearly independent solutions of the homogeneous equation

a(z)y”(z) + b(x)y'(z) + c(x)y(z) =0 or  y'(z) + p(x)y'(z) + q(z)y(x) =0,

or and y,(x) is a solution of the full equation. C; and Cy are arbitrary constants.

Proof
Not given.
yp(z) is called a particular integral. The general solution is sometimes written
y(@) = ye() + yp(2)

where y.(x) = Cyyi(x)+ Caya(x) is called the complementary function. It is the general
solution of the homogeneous form of the ODE.

0.4 Constant Coeffcients

We now consider (*) in the special case that a, b and ¢ are constants

ay"(x) + by (z) + cy(z) = f(2).

This type of equation has a nice interpretation as a damped/driven oscillator (where
x is time and y is the displacement from equilibrium). Recall the equation for a simple
harmonic oscillator

d?y(t)

o —w?y(t)

Now add in a damping force proportional to the velocity dy/dt and a driving force f(t)
(which may be periodic or non-periodic)

d*y(t)
dt2

= —y(0) -7 B0+ dte

which is a linear ODE with constant coeffcents.
The rst step in solving ODEs of this type is to nd two solutions of the homogeneous
equation

ay"(x) + by (z) + cy(z) = 0.
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This equation has simple exponential solutions of the form y(x) = ¢** . Differentiating
y'(z) = A’ and y"(x) = \2eM so that

ay”(x) + by’ + cy = (aX* + bA + )y

which is zero provided

ar? + b\ + ¢ = 0.

This is called an auxiliary equation. Thus y;(z) = e™?® and y»(7) = €*?* where \; and
Ao are roots of the (quadratic) auxiliary equation. The complementary function (if \; = Ay
) is yo(z) = Cr1eM® + Cyet?®,

If Ay = Xy we only have one exponential solution. In this case a second solution of the
ODE is y(z) = zeM® and y.(z) = C1eM® + Coxe™” (in the oscillator model this special
case corresponds to critical damping).

Examples

i) v+ 3y’ + 2y = 0. Auxiliary equation \> + 3\ + 2 = 0 roots A\; = 1, Ay = 2. General
solution y(z) = Cie® + Cye** (over-damping).

ii) ¥y’ + 2y +y = 0. Auxiliary equation A\? + 2\ + 1 = 0 with two equal roots A = 1.
General solution y(z) = (Cy + Cox)e”

iii) Auxiliary equation A\> + X 4+ 1 = 0 with complex roots A = % + %\/gz

The general complex solution is

y(l’) — Cle—%m—l—i%\/g:v 4 026—%x—i%\/§m

where ' and Cy are complex constants. The general real solution can be obtained by
imposing the constraint Cy = Cf :

1 1
y(x) = 7" [Cle%:” (cos 5\/§SL’ + i sin cos 5\/§x) + c.c.]
Writing Cy = (AiB) where A and B are real constants gives
1 1 1
y(x) =ezx (Acos 5\/§x + Bsin 5\/§x)

(underdamped- still oscillates).



