Part I11: ODEs

A differential equation is an equation involving a function (or functions) and its derivatives.
An ordinary differential equation (ODE) is a differential equation involving a function
(or functions) of one variable.
If the ODE involves the nth (and lower) derivatives it is said to be an nth order ODE.
Let y be a function of one variable (which we will always call x)
An equation of the form

hi(@,y(x),y'(x)) =0
is a rst order ODE.
h?(xv y(I)7 y,(i), y”(fﬂ)) =0

is second order.
A function satisfying y(z) the ODE is called a solution of the ODE.

0.1 Linear ODEs (2 types)

i) homogeneous. If y; and y, are solutions so is Ay; + By, where A and B are arbitrary
constants.

ii) inhomogeneous. If y; and ys are solutions so is Ay; + Bys where A+ B = 1.

The general 1st order linear ODE (for a single function) can be written

al@)y (@) + ba)y() = f(x)

a, b and f are arbitrary functions. The equation is homogeneous if f = 0.
It is sometimes written in the form

Y (@) + plx)y(z) = f(x).

(p=>/a and f/a has been renamed as f )
The general 2nd order linear ODE

a(@)y"(z) + b(x)y' (z) + c(2)y(z) = f(2) (%)

1 a, b, cand f are arbitrary functions (homogeneous if f = 0).
We will sometimes write (*) in the form

y'(@) + @)y (2) + q(x)y(x) = f(x). (%)

(**) looks more economical, but we will use (*) as well.

0.2 1st Order Case
All solutions of
y'(@) + p(2)y(z) = f(x)
can be written
y(x) = Cyn(x) + yp(x).

where y;(z) is a solution of the homogeneous equation y'(z) + p(z)y(z) =0
and y,(z) is one solution of the full equation.

Proof

by explicit construction.

can be rewritten

where
I(z) = / dzp(z).
a
(a is an arbitrary constant) which has the property I'(z) = p(z). I is called an inte-
grating factor. Now integrate from a to z

() ya) = [ dzef (o)

a

Note that e/(® = 1. This gives

y(@) = Cyn(@) + yp(2),
with y(z) = '@, y,(2) = '@ ["dze!® f(2) and C = y(a).

Example

Find all solutions of the ODE 1
1 .
y(@) + —y(a) = a*
Here p(z) = 1/2 which has a non-integrable singularity at = 0! Work with « > 0 (or
x < 0).
I(z) = [dap(z) = logz + c. Set ¢ =0 (or a = 1). e!® = x 5o that the ODE can be
written

%(xy) =z.a® =2t

Integrating gives zy = t2° + C or y = La' + C/x, ie. yi(x) = 1/x, yp(z) = ta'.
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0.3 2nd Order Case

All solutions (or the general solution) of (*) or (**) can be written

y(@) = Ciyi(x) + Coya() + yp(2).

Y1, Y2 are linearly independent solutions of the homogeneous equation

a()y" () +b(x)y' (z) + c(x)y(z) =0 or () +p(a)y'(x) + q(2)y(z) =0,

or and y,(x) is a solution of the full equation. C; and C, are arbitrary constants.

Proof
Not given.
yp(x) is called a particular integral. The general solution is sometimes written
Y(@) = ye(x) + yp(v)

where y.(z) = Chyi(z) + Cays(z) is called the complementary function. It is the general
solution of the homogeneous form of the ODE.

0.4 Constant Coeffcients

We now consider (*) in the special case that a, b and ¢ are constants

ay’(x) + by (z) + cy(z) = f(z).

This type of equation has a nice interpretation as a damped/driven oscillator (where
x is time and y is the displacement from equilibrium). Recall the equation for a simple
harmonic oscillator

Py(t)

T = ()

Now add in a damping force proportional to the velocity dy/dt and a driving force f(t)
(which may be periodic or non-periodic)

d?y(t)
2

= —wy(t) — di’l—it) +d(t)

which is a linear ODE with constant coeffcents.
The rst step in solving ODEs of this type is to nd two solutions of the homogeneous
equation

ay" (z) + by'(x) + cy(z) = 0.
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This equation has simple exponential solutions of the form y(z) = €** . Differentiating
y'(z) = A and y"(x) = A2 so that
ay”"(z) + by’ +cy = (aX? +bA+c)y
which is zero provided
aXt+bA+c=0.

This is called an auxiliary equation. Thus y;(z) = e*'® and ya(z) = e*2* where A; and
Mg are roots of the (quadratic) auxiliary equation. The complementary function (if Ay = Ay
) is ye(z) = C1eMT 4 Coe?2®.

If Ay = A2 we only have one exponential solution. In this case a second solution of the
ODE is y(z) = zeM® and y.(z) = C1eM” + Coxe™® (in the oscillator model this special
case corresponds to critical damping).

Examples

i) y” + 3y’ + 2y = 0. Auxiliary equation A2 4+ 3\ +2 = 0 roots A\; = 1, Ay = 2. General
solution y(z) = C1e® 4+ Cye*® (over-damping).
ii) y” + 2y’ +y = 0. Auxiliary equation A2 4+ 2\ + 1 = 0 with two equal roots A = 1.
General solution y(x) = (C; + Cox)e®
iii) Auxiliary equation A> + A + 1 = 0 with complex roots X = % + %\/gz
The general complex solution is
y(l) — 0167%Z+1%\/§Z + Czeféxfi%\/gm

where Cy and C; are complex constants. The general real solution can be obtained by
imposing the constraint Cy = CY :

1 1
y(z) = e3” {C’]e%z (cos 5\/31 + isin cos 5\/57) + c.c}
Writing C; = %(AiB ) where A and B are real constants gives
1 1 o1
y(z) = ezx <A cos 5\/31’ + Bsin 5\/31)

(underdamped- still oscillates).



