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Conservative fields

A smooth vector field F is conservative iff there exists a smooth scalar field φ such that

F = grad φ (1)

φ is often called a potential for F.
Since curl grad φ = 0 for any scalar field φ, curlF = 0 is a neccessary condition for F to

be conservative. It isn’t suffiecient, however, this is something we will return to, but, for
now, we notice that it makes it easy to spot fields that aren’t conservative, for example, if
F = (−y, x, 0) then

∇× F =





0
0
2



 (2)

On the other hand, it is easy to see that F = r is conservative because

∇
r2

2
=





x
y
z



 (3)

and therefore φ = r2/2 is a potential for F. Of course, curl r = 0.

Path independent fields

A field F is path independent if, for any two points p1 and p2 the line integral along any
path between those points has the same value.

In other words, a field is path independent if the line integral doesn’t depend on the
path it is taken along. Obviously, the integral around a closed path should be zero for a
path independent field and, in fact we can state a lemma:
Lemma: A smooth vector field F is path independent iff

∮

c

F · dl = 0 (4)

for any closed curve c.2

1Conor Houghton, houghton@maths.tcd.ie, see also http://www.maths.tcd.ie/~houghton/231
2The integral sign with a circle on it is a standard notation for an integral around a closed path.
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Proof: For a path independent F choose any two points on a closed curve c and label the
two curves from p1 to p2 as c1 and c2 so that c = c1 − c2. Now, by path independence,

∫

c1

F · dl =

∫

c2

F · dl (5)

and so
∮

c1−c2

F · dl =

∮

c

F · dl = 0 (6)

Conversely, two difference paths between two points p1 and p2 can be subtacted from each
other to give a closed path c = c1 − c2 so

0 =

∮

c

F · dl =

∮

c1−c2

F · dl (7)

implies
∫

c1

F · dl =

∫

c2

F · dl (8)

�

Conservative fields are path independent

Theorem: On a connected domain, a smooth vector field F is path-independent iff it is
conservative.
Proof: First, given a conservative field F = ∇φ for some smooth φ consider the line
integral along some curve c from p1 to p2. Let r(t) be a parameterization of the curve with
p1 = r(t1) and p2 = r(t2). Now,

∫

c

F · dl =

∫

t2

t1

F ·
dr

dt
dt
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=

∫

t2

t1

∇φ ·
dr

dt
dt

=

∫

t2

t1

(

∂φ

dx

dx

dt
+

∂φ

dy

dy

dt
+

∂φ

dy

dy

dt

)

dt (9)

where we have used the fact that F is conservative and we have written the dot product
out explicitely. Now, we use the chain rule to rewrite the dot product

∂φ

dx

dx

dt
+

∂φ

dy

dy

dt
+

∂φ

dy

dy

dt
=

dφ

dt
(10)

where φ(x, y, z) is a function of t along the curve through the t dependence of x, y and z:
φ(t) = φ(x(t), y(t), z(t)). This gives

∫

c

F · dl =

∫

t2

t1

dφ

dt
dt = φ(t)]t2

t1
= φ(t2) − φ(t1) (11)

which depends only on the value of the φ at the begining and end of the curve and is
therefore path independent.

To go the other way, for give path independent F and some fixed point p let

φ(r) =

∫

c

F · dl (12)

where c is a path from p to r. Since the field is path independent φ is well defined. It
clearly depends on the choice of the reference point p and so φ isn’t unique, however, two
choices only differ by an overall constant. We now want to prove that F = ∇φ. We begin
by proving

F1 =
∂φ

∂x
(13)

where F = F1i + F2j + F3k. If this hold it should hold for all paths, so lets choose a path
c = c1 + c2 where c1 goes from p to a point (x′, y, z) and c2 runs from (x′, y, z) to (x, y, z).
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Now,

φ(r) =

∫

c

F · dl =

∫

c1

F · dl +

∫

c2

F · dl

=

∫

c1

F · dl +

∫

x

x′

F1dx (14)

where in the last line we have used that dy = dz = 0 along the curve c2. Now, noting that
the first integral doesn’t depend on x, we differenciate

∂

∂x
φ =

d

dx

∫

x

x′

F1dx = F1 (15)

using the fundamental theorem of calculus. Now, a similar arguement could be used for
the other component and so the theorem is proved. �

Conservative fields and irrotational fields

All conservative fields are irrotational because

∇× F = ∇×∇φ = 0 (16)

but, the converse isn’t true in general, an irrotational field is not neccessarily conservative.
However, Stoke’s theorem can be used to prove that it is true locally: if a field is irrotation
then for any point there is a neighbourhood of the point for which it is conservative.

A more general theorem applies to simply connected domain. A domain is simply

connected if any two paths between the same two points can be deformed into each other
smoothly. The plane is simply connected but the plane minus a point, say R2 \ (0, 0)3 is
not because the missing point gets in the way. So, in the R2 \ (0, 0) example the path from
(−1, 0) to (1, 0) along the upper half circle can’t be deformed into the path along the lower
half circle because the missing point gets in the way. Anyway, without proof, we have a
theorem:
Theorem: On a simply connected domain a smooth vector field is irrotational iff it is
conservative.

3The backslash is a set minus, that is

R
2 \ (0, 0) = {(x, y) ∈ R

2|(x, y) 6= (0, 0)} (17)
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