
Vector Potentials

Recall that if curl F = 0 in a simply-connected region then F is conser-
vative meaning there exists a scalar potential φ such that F = grad φ.

There is a similar result for solenoidal vector fields:

Theorem If div F = 0 in a region without inner boundaries there exists a
vector field A such that F = curl A. A is called a vector potential for F.

Example F = B a constant vector (obviously solenoidal). A vector potential
is A = 1

2
(B × r).

The above theorem will not be proved in full here. Rather a (constructive)
proof is given for the special case of a star-shaped region.

[A region D is called star-shaped if it has a point O such that the line-segment
joining O and any other point in D lies within D.]

If D is star-shaped there is a formula for the vector potential for a
solenoidal vector field

A(r) =

∫

1

0

dt F(tr) × tr.

where the point O in D is taken to be the origin (r = 0).

Proof To prove this we have to show that taking the curl of the right hand
side reproduces the original vector field F. We have

curl A(r) =

∫

1

0

dt curl (F(tr) × tr) .

Using the vector identity

∇× (F × G) = (∇ · G)F + (G · ∇)F − (∇ · F)G − (F · ∇)G

curl (F(tr) × tr) = 3tF(tr) + t(r · ∇)F(tr) − 0 − t(F(tr) · ∇)r,

using div r = 3 and div F = 0.

A straightforward calculation gives

(F(tr) · ∇) r = F(tr)

1



We also require

(r · ∇)F(tr) = t
d

dt
F(tr),

or
(

x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)

F(tx, ty, tz) = t
d

dt
F(tx, ty, tz),

which is a generalisation of

a
d

da
g(at) = t

d

dt
g(at).

Inserting these two formulae into the expression for curl (F(tr)×tr) gives

curl A =

∫

1

0

dt

[

2tF(tr) + t2
d

dt
F(tr)

]

=

∫

1

0

dt
d

dt

(

t2F(tr)
)

= F(r),

using the FToC.

Note that the vector potential for a solenoidal vector field is not unique;
if A is a vector potential for F then so is

A
′ = A + grad φ, (1)

where φ is any scalar field since

curl grad φ = 0.

In electromagnetic theory this ambiguity is called gauge freedom and (1) is
called a gauge transformation.

We have seen that in a simply-connected region an irrotational vector field
can be written as a scalar and in a region without inner boundaries (though
the proof was only given for star-shaped regions) a solenoidal vector field can
be expressed as a curl. Now if F is neither solenoidal nor irrotational it can
be decomposed into a gradient and a curl. There are a number of versions
of this statement and they go under various names (Fundamental theorem of
vector analysis, Helmholtz’ theorem, Hodge decomposition).
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Here we give a simple version of the decomposition theorem:

Any vector field F defined in a region D without inner boundaries can
be written

F = grad φ + curl A

Approach to Proof: Assume that F is not solenoidal and consider F − ∇φ

where φ is (for now) any scalar field. We have

div (F −∇φ) = div F −∇
2φ.

Now if there exists a scalar field satisfying the equation

∇
2φ = div F (∗)

then F −∇φ is solenoidal in D and so we can write

F − grad φ = curl A.

To complete the proof we need to show that (*) always has a smooth solution
φ. (*) is actually a form of Poisson’s equation. More later.......
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