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Questions

1. (4) Find the first four terms in the Taylor expansion of In(x) about = = 1.

Solution: So we are interest in the expansion of In (1 4 h) in h:
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2. (2) Use implicite differentiation to find dy/dz where

Inz+ 22y +y* =0 (4)
Solution: Differenciating across we get
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so, solving for dy/dx we get
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3. (2) Find
|
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both by factorizing and by I’'Hopital’s rule.
Solution: First by factorizing:

21 —1 1
lim x = lim (z )@ +1) = lim
e—122 —x  a—1  x(z—1) —1 I

x+1:2 (8)

and, we can see from the above that both numerator and denominator vanish at x = 1 so
we can use ’Hopital’s rule:
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Extra Questions

1. Find df /dz where f(x) = cos™! .
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Solution: So, say y = cos™ z and hence x = cosy. Now differentiate
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and now it would be good to rewrite this in terms of z; siny = ++/1 — cos?y and
choosing the positive square root, making the sine positive, as is appropriate for the
interval zero to .
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where we have used cosy = cos (cos™' x) = z.
2. Find dy/dz where Iny + Inz = exp xy.
Solution: Differentiating
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so, solving for dy/dx
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3. Differentiate In cos .

Solution: This is done using the chain chain rule
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4. Differentiate In 2® both by the chain rule and by Inz?® = 3Inz.
Solution:

So, by the chain rule we get
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Solution: So the top and bottom are both zero at the limit point z = 0, so, differen-
tiating top and bottom
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Solution: Again the top and bottom are both zero at =1 so
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Solution: Trick question, the denominator isn’t zero at x = 1, in fact you kiust
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Solution: Again, and bottom are zero at x = 1, so differentiate
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so now the bottom is zero but the top isn’t and the sign is different for x approaching
from above and x approaching from below, so the limit is not defined.



