

A Toolkit for Designing Interactive Musical Agents
Aengus Martin, Craig T. Jin

Computing and Audio Research Lab (CARLab)
Sydney University, NSW 2006, Austr
{aengus.martin,craig.jin}@sydney.edu.au

ABSTRACT
We have developed a prototype software
non-technical users to design artificially intelligent agents
to perform electronic music in collaboration with a
human musician. In this paper we describe the toolkit and
present a preliminary investigation of
discuss how the investigation has helped identify issues to
address in an upcoming user-centred design study
will take place in Spring 2011.

Author Keywords
Interactive machine learning, music, musical interaction

ACM Classification Keywords
H5.5 [Sound and Music Computing] M
Techniques

INTRODUCTION
An interactive musical agent (IMA)
intelligent software system for
interactively with a human performer.
developed a great variety of IMAs for performing
different interactive musical roles. In the literature, we
find IMAs that act as artificial improvisers that can take
the place of a jazz improviser in a live performance
scenario (Lewis 2000), musical accompanists designed to
provide backing music while a human mus
(Toiviainen 1998), as well as a wide variety of
experimental IMAs that can take part in live music
performance, but do not fulfil traditional musical roles
(Blackwell et al., in press).

For musicians interested in using new tech
work, the area of IMAs is an exciting
IMAs are not readily available either as commercial
products or as resources in the public domain
are complex to design. They are generally the result of
research projects conducted by techn
musicians (i.e. those proficient in computer programming
and algorithms), and they are most often
the direct involvement of, their creators.
examples in the literature of interactive music programs
which do not require technical expertise, and
behaviour can be influenced by a musician in a limited
way: they mimic the musician’s style of performance
either on an acoustic instrument (Pachet, 2003) or a
software one (Martin et al., 2011). However,
currently possible for non-technical musicians
IMAs for use in their own work. In this paper, we address

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OZCHI '11, Nov 28 – Dec 2, 2011, Canberra, Australia
Copyright © 2011 ACM 978-1-4503-1090-1/11/11

186

A Toolkit for Designing Interactive Musical Agents
Aengus Martin, Craig T. Jin

Computing and Audio Research Lab (CARLab)
NSW 2006, Australia

{aengus.martin,craig.jin}@sydney.edu.au

Oliver Bown
Faculty of Architecture, Design and Planning

Sydney University, NSW 2006, Australia
oliver.bown@sydney.edu.au

software toolkit to enable
technical users to design artificially intelligent agents

in collaboration with a
. In this paper we describe the toolkit and

 its use. We then
has helped identify issues to
centred design study, which

musical interaction

Methodologies and

 is an artificially
 playing music
. Researchers have

developed a great variety of IMAs for performing
interactive musical roles. In the literature, we

find IMAs that act as artificial improvisers that can take
the place of a jazz improviser in a live performance

), musical accompanists designed to
provide backing music while a human musician performs

), as well as a wide variety of
experimental IMAs that can take part in live music
performance, but do not fulfil traditional musical roles

technology in their
IMAs is an exciting one. However,

IMAs are not readily available either as commercial
products or as resources in the public domain, and they

. They are generally the result of
technically proficient

(i.e. those proficient in computer programming
most often used by, or with
their creators. There are

examples in the literature of interactive music programs
require technical expertise, and whose

by a musician in a limited
hey mimic the musician’s style of performance

either on an acoustic instrument (Pachet, 2003) or a
However, it is not

technical musicians to design
In this paper, we address

the question: How can a non-
an IMA and furthermore, how can this development fit
into a creative workflow? Central
challenge of enabling the user to overcome the technical
complexity of IMA design.

One promising approach would be
musician to prescribe the behaviour of an IMA by simply
providing examples of that behaviour.
this is achieved using machine learning techniques.
However, aside from the fact that a prohibitive amount of
example data would often be required, most creative
practitioners do not begin with a fully conceived idea of a
finished product, which then only requires precise
specification in order to be realised. Rather, they begin
with some initial ideas and then follow an iterative design
process involving modification and testing until a
satisfactory product is arrived at. With this in mind,
minimum requirement to be consistent with the
musician’s creative workflow, a tool for designing
should take the design-by-example
point, but also provide the musician
through modification and testing stag
design.

Figure 1. User interface of a software music system
could be controlled by a musician and an IMA

The labels A-D are referred to in

In this paper we present a prototype
IMAs intended to perform live electronic music in
collaboration with a human musician
use. We consider the common
which pre-prepared musical elements are controlled at a
high-level. In other words,
sequences, audio effects and
musical elements) are mixed together and arranged to
create complete musical works.
example software music system
control is shown in Figure 1. In this software, the musical
elements are parametrically controlled
performance the IMA would be assigned
subset of the parameters. It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that

ation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,

, Canberra, Australia
1/11/11... $10.00

A Toolkit for Designing Interactive Musical Agents
Oliver Bown

Faculty of Architecture, Design and Planning
Sydney University, NSW 2006, Australia

oliver.bown@sydney.edu.au

-technical musician develop
an IMA and furthermore, how can this development fit

Central to this is the CHI
challenge of enabling the user to overcome the technical

would be for a non-technical
to prescribe the behaviour of an IMA by simply

providing examples of that behaviour. Computationally,
this is achieved using machine learning techniques.
However, aside from the fact that a prohibitive amount of

be required, most creative
practitioners do not begin with a fully conceived idea of a

then only requires precise
specification in order to be realised. Rather, they begin
with some initial ideas and then follow an iterative design
process involving modification and testing until a
satisfactory product is arrived at. With this in mind, as a
minimum requirement to be consistent with the
musician’s creative workflow, a tool for designing IMAs

example approach as a starting
musician the ability to iterate

modification and testing stages to improve the

of a software music system which
a musician and an IMA in tandem.

D are referred to in the text.

prototype toolkit for designing
perform live electronic music in

musician and investigate its
common performance context in

prepared musical elements are controlled at a
words, audio samples, MIDI

 algorithmic processes (i.e.
mixed together and arranged to

create complete musical works. The interface for an
software music system that supports this kind of

In this software, the musical
rically controlled. For collaborative

he IMA would be assigned control of a
 would be responsible for

187

choosing new values for those parameters at certain
decision times during the performance.

In the following sections, we describe the toolkit, and
outline some of the ways in which a musician can
incorporate his/her musical knowledge into IMA design.
We then report on a preliminary investigation in which an
IMA was designed for the software music system whose
interface is shown in Figure 1. This serves to illustrate the
use of the toolkit, and to identify issues that we intend to
address in an upcoming user-centred design (UCD, see
e.g. Vredenburg et al., 2002) study, discussed in the final
section.

A PROTOTYPE TOOLKIT FOR IMA DESIGN
As mentioned above, the design-by-example approach
requires the use of machine learning. The paradigm in
which a human interacts with machine learning
algorithms in order to iteratively arrive at a satisfactory
result is known as interactive machine learning (IML,
Fails and Olsen, 2003). In this section, we describe a
prototype toolkit for IMA design, which incorporates
appropriate machine learning algorithms to support the
following proposed workflow (see Figure 2): The
musician begins by creating a set of examples of musical
performances that illustrate “good” musical behaviour.
He/she then configures a set of machine learning
algorithms, and runs them to produce a model for the
behaviour of an IMA. The IMA may then be evaluated
through real-time interaction. If the musician is not
satisfied, he/she has three options. First, he/she may add
more examples to better illustrate the desired behaviour.
Second, he/she may re-configure the machine learning
algorithms to improve the chances of discovering the
important patterns in the example performances. Finally,
the musician may manually alter the behaviour model.

Figure 2. The interactive machine learning workflow
supported by the toolkit.

A relevant context in which to apply this workflow is
given by Pressing’s (1988) model of musical
improvisation. In this model, an improvisation is
represented as a series of non-overlapping sections called
event clusters, which are pre-defined sets of musical
events. For improvisation with acoustic instruments,
events are usually musical notes or articulations. At
frequent decision times during a performance, the
improviser chooses the next event cluster that will take
place. The actual execution of the event cluster is
deferred to lower level motor control mechanisms which
operate at a speed faster than conscious decision making.

The activity of electronic musicians arranging musical
elements in time, described in the previous section, is
equivalent to this model of an instrumental improviser,
with musical elements taking the place of the performer’s
low-level motor control, but the high-level structuring
process being essentially the same. This act of arranging
musical elements by an electronic musician can be broken
into two components: the choice of valid combinations of
musical elements according to musical constraints and the
sequencing of those combinations over time.

We define an IMA specification as a prescription for the
way in which an IMA chooses new values for the
parameters under its control. In our toolkit, an IMA
specification comprises three parts: (i) a set of musically
salient variables, (ii) a set of probabilistic temporal
models describing how these variables change over time,
and (iii) a set of deterministic rules describing
interdependencies between the variables. The first of
these is manually defined by the musician, while the
second and third are learnt by machine learning
algorithms, which have been configured by the musician.
Thus, in creating each part the musician can incorporate
his/her musical knowledge into the IMA. We now
describe each part in turn and then summarise the
functionality of the real-time performance engine, which
is the component used to interactively run an IMA.

The set of variables includes the values of the parameters
under the control of the IMA and those being controlled
by the musician. In addition, other quantities may be
included which are considered to be relevant to musical
decision making. These may be numerical descriptions of
the music, such as the output of “machine listening”
signal processing analyses (e.g. noisiness or loudness),
the output of probabilistic algorithmic processes in the
system, or the products of mathematical operations on
these quantities (there is a pre-defined set of such
operations).

Our probabilistic temporal models are variable order
Markov models (VMMs, Ron et al., 1996). A VMM uses
the current and past values of a variable to give the
possible next values and their probabilities. The musician
incorporates his/her musical knowledge into the IMA by
choosing the variables which will be modelled by VMMs
and the parameters of the VMMs.

Finally, the rules describing the dependencies between
variables are learnt from the example data using
association rule learning (ARL) algorithms (see e.g.
Hastie et al., 2009). These algorithms can discover
dependencies between the variables in the IMA
specification. The dependencies discovered are in the
form of “implies rules”, for example:

Bassdrum: On AND Hihat: On � Snare drum: On

which can be read: “if the bass drum is sounding and the
hi-hat is sounding then the snare drum must be sounding
too” (the rules derived by the toolkit are generally more
complex). A set of such rules defines a set of “allowed”
variable value configurations. The musician can influence
the rule discovery process by setting certain parameters of
the ARL algorithms and also by choosing subgroups of

4. Edit the IMA
specification

2. Configure machine
learning algorithms

1. Create /
Edit training

examples

3. Run machine learning
algorithms

5. Evaluate behaviour using real-time engine

188

variables, amongst which he/she thinks salient rules are
likely to be found.

Once an IMA specification has been created, it can be run
using the real-time performance engine. This component
of the toolkit is a piece of software that can interact in
real-time to control parameter values according to an
IMA specification and with respect to the values of the
musician-controlled parameters at each decision point. It
is based on a software library (www.emn.fr/z-info/choco-
solver) for solving constraint satisfaction problems (see
e.g. Apt, 2003). It was implemented as a plugin for Max
(www.cycling74.com), which is a common platform for
the development of novel interactive music systems.

We now report on a preliminary investigation in which
the toolkit was used by one of the authors to design an
IMA to collaboratively play an electronic music system.
This is presented both as an illustration of the toolkit’s
use and as groundwork for an upcoming UCD study.

PRELIMINARY INVESTIGATION OF IMA DESIGN
The toolkit was used to create an IMA intended to
collaboratively control a custom software music system
with a musician. The system for which the IMA was
designed was created using the Max platform (see above)
and a screenshot of its user-interface is shown in Figure 1.
There are 97 parameters on the interface, which can be
controlled during the course of a performance. These are
(A) a set of 11 binary-valued parameters (check boxes)
used to turn on and off instruments and effects; (B) an
integer-valued parameter, used to control the rhythmic
output of a drum machine; (C) a bank of 84 binary-valued
parameters used to route the signals between the software
instruments and effects; (D) an integer-valued parameter
associated with one of the effects.

In the following, we highlight a number ways in which
the musician incorporated his knowledge both of the
software music system and of his own style of performing
with it, into the IMA design process. The first design
decision was to set the interval between decision times, as
this determines how the example performances are
recorded. The interval was set to be the length of one
repeat of the music’s harmonic structure, so the IMA
would update its parameters at the beginning of each
repetition. Next, ten example performances were recorded
using the system. Each example comprised the values of
all parameters, sampled at each decision time.

What followed was an iterative process of adjusting the
variable definitions and the parameters of the machine
learning algorithms, until a satisfactory IMA resulted. At
each design iteration, the musician used his musical
knowledge to aid the design process. For example, the
overall structure of the music was dictated by ten
particular binary-valued parameters. These controlled the
presence or absence of the most musically salient
instruments and audio effects. These parameters were
configured as a subgroup (see previous section) in order
that dependencies between them could be found more
easily.

The musician also identified that the temporal evolution
of the music was primarily related to four parameters: the

controls of the bass drum, the bass instrument, the lead
melody instrument and the rhythmic output of the drum
machine. A temporal model (VMM) was created for each
of these parameters so that their values would evolve in a
way that was similar to the examples.

The control of the bank of 84 binary-valued parameters
provides a good example of how ingenuity can
compensate for a scarcity of training data. These
parameters were altered only a few times during a typical
performance and with little data, no dependencies
between them could be found. A useful musical insight
was that the precise configuration of the parameters did
not greatly effect on the music produced (they mainly
contributed to subtle variation), but rather the number of
parameters set to 1 (not 0) was a musically salient
quantity. To use this insight, an additional variable was
defined as the sum of the values of the parameters in the
bank, and a temporal model was created for this sum
variable. Thus, while the precise configuration of these
parameters was randomly selected, the structure was
controlled by temporal modelling of the sum variable.

A similar insight was that the integer-valued parameter
(item D above) only contributed to subtle variation in the
music. The ARL algorithms could find no meaningful
dependencies involving this parameter. Instead a model
was created so that its value was chosen from a
probability distribution calculated from the examples.

Properties of the resulting IMA
Decisions made during the design of the IMA, greatly
affected the manner in which it generalized from the
training examples. By this we mean the extent to which
the IMA’s behavior reflects the underlying intent of the
musician. This can be understood by considering the case
in which a high-order temporal model is created for all
variables, and the ARL algorithms are configured to find
all possible rules. In this case only configurations of
parameter values seen in the example data would be used
by the IMA, and the music produced would be extremely
similar, if not identical to the examples. Conversely, if no
temporal models or rules were created, the IMA would
randomly choose parameter configurations. The design
process can be seen in part as a search for a balance
between these two extremes; one in which the IMA
performs with more variety than is illustrated in the
examples, while behaving in a musically appropriate way.

The IMA that resulted from the design process just
described did generalise significantly from the examples.
For example, for one particular group of ten of the most
actively used binary-valued parameters (used to turn on
and off instruments and effects), there are 1024 possible
configurations. Only 87 unique configurations were
present in the example data, however the final set of rules
concerning these parameters allowed for 136 different
configurations (over 1.5 times more). In addition, since
temporal models were created for only a small set of
variables, the variety of time-trajectories of parameter
configurations was much greater than that in the training
examples. While the use of the sum variable to control the
bank of 84 binary-valued parameters was an
approximation, the resulting control worked well. It

189

would have been possible to explore more complex
solutions (a sum variable per column of the matrix, for
instance, and the discovery of dependencies between the
sum variables) but this was not found to be necessary.

Issues identified during the design process
While the toolkit does not require any programming
expertise, the musician was required to reflect on the
music system and introspect about his manner of playing
it, in quite a technical manner. It was necessary to
consider which parameters might depend most upon one
another, and what mathematical combinations of
parameter values might be musically salient. This is not a
practise to which we expect many musicians are
accustomed. In addition, the computational expense of the
real-time performance engine places a practical limit on
the number of rules in an IMA specification. During the
design process, a number of models had to be discarded
due to this. The musician was required to arrive at more
efficient IMAs by grouping the variables differently.
Finally, real-time interaction with the IMA was the only
evaluation method. Due to the probabilistic nature of the
IMA’s actions, it occasionally took a long time to
discover undesirable aspects of its behaviour.

DISCUSSION
While we know of no other tools available for IMA,
design, Fiebrink’s Wekinator software (Fiebrink et al.,
2011) is a similar tool for the mapping of musical
gestures to sound synthesis parameters. It is the result of a
comprehensive CHI-oriented investigation into the use of
IML in computer music applications. The software
includes a number of supervised machine learning
algorithms which were chosen with the mapping task in
mind, and they are not suitable for the unsupervised
machine learning problems that IMA design entails.

We plan to conduct a UCD study which aims to (i)
identify creative workflow scenarios in which the
interactive design of an IMA can lead to new and
stimulating outcomes for practicing musicians, and (ii)
address the issues identified above through
experimentation with interfaces, representations of the
data and working paradigms.

For (i) our study will be established in the context of a
real working scenario for electronic musicians. The
popular performance platform Ableton Live
(www.ableton.com) provides users with a simple
interface for layering and sequencing musical elements
(“clips” in their terminology) in real-time, meaning that
our toolkit can be directly incorporated into an Ableton
Live project. Having trained users with the prototype
system we will investigate their ability to achieve an IMA
design task, and will also respond to new uses they come
up with themselves.

For (ii) we will first focus on users’ responses to
representations of the data associated with the resulting
IMA specification. A set of preliminary calculations will
be added which would enable the toolkit to suggest likely
variable subgroups to the musician. Additionally, a new
design phase might be introduced in which the musician
is asked a series of non-technical questions about the

examples and his/her answers are used to configure the
variables and algorithms.

We will consider techniques to visualise the parameter
configurations given by the ARL-derived rules.
Generally, the allowed parameter configurations will be
too numerous to display, but techniques exist which can
be used to find the most diverse configurations allowed
by a given rule set (Hebrard et al., 2005). These
configurations could be visualised by overlaying them on
the user-interface, thus giving the musician an indication
of how the IMA generalises from the examples.

CONCLUSION
This paper has presented a prototype software toolkit that
we have developed to enable non-technical musicians to
design IMAs. Its use has been illustrated in a preliminary
investigation in which an IMA was designed to
collaboratively play an electronic music system. This has
helped us identify issues to address in a user-centred
design study, which we plan to conduct in Spring 2011.

REFERENCES
Apt, K. R. Principles of Constraint Programming.

Cambridge University Press (2003).

Blackwell, T., Bown, O. and Young, M. Live Algorithms.
In McCormack, J. and D’Inverno, M. (Eds)
Computational Creativity. Springer, Berlin (in press).

Fails, J. A. and Olsen, Jr., D. R. Interactive machine
learning. In Proc. International Conference on
Intelligent User Interfaces (2003), 39-45.

Fiebrink, R., Cook, P.R. and Trueman, D. Human Model
Evaluation in Interactive Supervised Learning. In Proc.
CHI 2011, ACM Press (2011), 147-156.

Hastie, T., Tibshirani, R. and Friedman, J. The Elements
of Statistical Learning. Springer (2009).

Herbard, E., Hnich, B., O’Sullivan, B. and Walsh, T.
Finding diverse and similar solutions in constraint
programming. In Proc. AAAI (2005), 372-377.

Lewis, G. Too many notes: Computers, complexity and
culture in voyager. Leonardo Music J. 10 (2000), 33-39.

Martin, A., McEwan, A., Jin, C.T., and Martens, W.L. A
similarity algorithm for interactive style imitation. In
Proc. ICMC (2011), 571-574.

Pachet, F. The continuator: Musical interaction with style.
J. New Music Res. 32, 3 (2003), 333-341.

Pressing, J. Improvisation: methods and models. In
Sloboda, J.A. (Ed), Generative Processes in Music: The
Psychology of Performance, Improvisation and
Composition. Oxford University Press, (1988).

Ron, D., Singer, S. and Tishby, N. The power of amnesia:
Learning probabilistic automata with variable memory
length. Mach. Learn. 25 (1996), 113-149.

Toiviainen, P. An Interactive MIDI accompanist.
Comput. Music J. 22, 4 (1998), 63-75.

Vredenberg, K., Mao, J.-Y., Smith, P.W. and Carey, T. A
survey of user centred design practice. In Proc. CHI
2002, ACM Press (2002), 471-478.

