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ABSTRACT

We have developed a prototypeftwaretoolkit to enable
non+technical users to design artificially intelligeagents
to perform electronic musidn collaboration with ¢
human musicianin this paper we describe the toolkit
present a preliminary investigation § use. We then
discuss how the investigatidvas helped identify issues
address in an upcoming usantred design stu, which
will take place in Spring 2011.
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INTRODUCTION
An interactive musical agent (IMA)s an atrtificially
intelligent  software system for playing music

interactively with a human performeresearchers have
developed a great variety of IMAs for performi
different interactive musical roles. In the literature,
find IMAs that act as artificial improvisers thaarc take
the place of a jazz improviser in a live performa
scenario (Lewis 2000 musical accompanists designec
provide backing music while a human rician performs
(Toiviainen 1998 as well as a wide variety
experimental IMAs that can take part in live mu
performance, but do not fulfil traditional musicalles
(Blackwell et al., in press).

For musicians interested in using ngtnology in their
work, the area ofMAs is an excitingone. However,
IMAs are not readily available either as commer
products or as resources in the public doi, and they
are complex to desigrThey are generally the result
research projects conducted tgchrically proficient
musiciang(i.e. those proficient in computer programm
and algorithms), and they ameost oftel used by, or with
the direct involvement oftheir creators There are
examples in the literature of interactive musicguams
which do notrequire technical expertise, arwhose
behaviour can be influencdady a musician in a limite
way: they mimic the musician’s style of performar
either on an acoustic instrument (Pachet, 2003)a
software one (Martin et al., 2011However it is not
currently possible for notechnical musiciar to design
IMAs for use in their own workn this paper, we addre
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the question: How can a ndechnical musician develop
an IMA and furthermore, how can this developmenh
into a creative workflow?Centra to this is the CHI
challenge of enabling the user to overcome thenieah
complexity of IMA design.

One promising approactvould be for a non-technical
musicianto prescribe the behaviour of an IMA by sim|
providing examples of that behavic Computationally,
this is achieved using machine learning technic
However, aside from the fact that a prohibitive amtoof
example data would oftebve required, most creati
practitioners do not begin with a fully conceive@a of ¢
finished product, whichthen only requires precis
specification in order to be realised. Rather, thegin
with some initial ideas and then follow an iteratidesigr
process involving modification and testing until
satisfactory product is arrived at. With this innahjas a
minimum requirement to be consistent with
musician’s creative workflow, a tool for design IMAs
should take the design-lexampli approach as a starting
point, but also provide thmusiciar the ability to iterate
through modification and testing stes to improve the
design.
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Figure 1. User interface of a software music system which
could be controlled by a musician and an IMA in tandem.
ThelabelsA-D arereferred toin the text.

In this paper we presentpaototypetoolkit for designing
IMAs intended to perform live electronic music i
collaboration with a humamusiciar and investigate its
use. We consider theommon performance context in
which preprepared musical elements are controlled
high-level. In other words audio samples, MIDI
sequences, audio effects aaldjorithmic processes (i.e.
musical elements) arenixed together and arranged
create complete musical workThe interface for an
examplesoftware music systethat supports this kind of
control is shown in Figure 1n this software, the music
elements are paramigially controllec. For collaborative
performance e IMA would be assignecontrol of a
subset of the parameters. Mould be responsible for



choosing new values for those parameters at certairThe activity of electronic musicians arranging ncasi
decision times during the performance. elements in time, described in the previous sectisn
equivalent to this model of an instrumental impsevj
with musical elements taking the place of the penfr’s
low-level motor control, but the high-level strudhg
process being essentially the same. This act ahging
musical elements by an electronic musician canrbkem
into two components: the choice of valid combinasiof
musical elements according to musical constraimdsthe
sequencing of those combinations over time.

In the following sections, we describe the toolkihd
outline some of the ways in which a musician can
incorporate his/her musical knowledge into IMA dgsi
We then report on a preliminary investigation iniethan
IMA was designed for the software music system whos
interface is shown in Figure 1. This serves tcstliate the
use of the toolkit, and to identify issues thatinend to
address in an upcoming user-centred design (UCB, se
e.g. Vredenburg et al., 2002) study, discussetarfinal We define anMA specification as a prescription for the
section. way in which an IMA chooses new values for the

A PROTOTYPE TOOLKIT FOR IMA DESIGN parameters under its control. In our toolkit, anAM

: : ification comprises three parts: (i) a set abically
As mentioned above, the design-by-example approacﬁpec' ; o o
requires the use of machine learning. The paradigm salient vanaplgs, (i) a set of .probab|l|st|c o Tl
which a human interacts with machine learning models describing how these variables change awer, t

algorithms in order to iteratively arrive at a s&dctory and (i) a set of deterministic . rules descr!bmg
result is known asnteractive machine learning (IML, interdependencies between the variables. The @fst

Fails and Olsen, 2003). In this section, we descdb these is manually defined by the musician, while th

prototype toolkit for IMA design, which incorporate Second and _th|rd are learnt _by machine !ea_rnlng
appropriate machine learning algorithms to supplogt algorlthms, Wh'Ch have been conﬂgu_re_d by the_ masic
following proposed workflow (see Figure 2): The T_hus, In creating each part th_e musician can Ireaig
musician begins by creating a set of examples dfical h|s/he_r musical knovyledge into the IMA. We_ now
performances that illustrate “good” musical behavio desc_nbe _each part in turn and then summarise the
He/she then configures a set of machine Iearning?cunCtIOnaIIty of thereal-tlmg perfor_mance engine, which
algorithms, and runs them to produce a model fer th is the component used to interactively run an IMA.
behaviour of an IMA. The IMA may then be evaluated The set of variables includes the values of thamaters
through real-time interaction. If the musician i®tn under the control of the IMA and those being calerb
satisfied, he/she has three options. First, hefiséig add by the musician. In addition, other quantities mzy
more examples to better illustrate the desired Wieba  included which are considered to be relevant toicalis
Second, he/she may re-configure the machine legrnin decision making. These may be numerical descrigtafn
algorithms to improve the chances of discovering th the music, such as the output of “machine listehing
important patterns in the example performancesallyin  signal processing analyses (e.g. noisiness or Essjn
the musician may manually alter the behaviour model  the output of probabilistic algorithmic processesttie
system, or the products of mathematical operatimms
these quantities (there is a pre-defined set ofh suc

operations).
Ig-&itcilf;aira?nlg 2. Con_ﬁgure machine 3.Run machine learning o .
examples learning algorithms algorithms Our probabilistic temporal models are variable orde
Markov models (VMMs, Ron et al., 1996). A VMM uses
the current and past values of a variable to ghe t
4 possible next values and their probabilities. Thesician
_ incorporates his/her musical knowledge into the IlkhA
5. Evaluate behaviour using real-time engine oo choosing the variables which will be modelled by M
and the parameters of the VMMs.
w Finally, the rules describing the dependencies betw
Figure 2. The inter active machine lear ning wor kflow Varia_ble_s are Iearnt_ from_the exa_lmple data using
supported by the toolkit. association rule learning (ARL) algorithms (see e.g.

) ) ) ] Hastie et al., 2009). These algorithms can discover

given by Pressing's (1988) model of musical gpecification. The dependencies discovered arehén t
improvisation. In this model, an improvisation is form of “implies rules”, for example:

represented as a series of non-overlapping seatilted )
event clusters, which are pre-defined sets of musical ~ Bassdrum: On AND Hihat: O Snare drum: On

events. For improvisation with acoustic _instruments \yhich can be read: “if the bass drum is sounding the
events are usually musical notes or articulatioAs.  phihat is sounding then the snare drum must bedingn
frequent decision times during a performance, theigqr (the rules derived by the toolkit are genaratiore
improviser chooses the next event cluster that taite complex). A set of such rules defines a set ofota#id”
place. The actual execution of the event cluster isgriaple value configurations. The musician caturice
deferred to lower level motor control _mechamsmgcﬁvh the rule discovery process by setting certain patara of
operate at a speed faster than conscious decisa@imm the ARL algorithms and also by choosing subgroups o
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variables, amongst which he/she thinks salientsrales
likely to be found.

Once an IMA specification has been created, itlmnun
using the real-time performance engine. This corapbn
of the toolkit is a piece of software that can iat& in
real-time to control parameter values accordingato
IMA specification and with respect to the valuestioé
musician-controlled parameters at each decisiontpti
is based on a software library (www.emn.fr/z-infaico-
solver) for solving constraint satisfaction probkeifsee
e.g. Apt, 2003). It was implemented as a pluginMax
(www.cycling74.com), which is a common platform for
the development of novel interactive music systems.

We now report on a preliminary investigation in oHi
the toolkit was used by one of the authors to desig
IMA to collaboratively play an electronic music & .
This is presented both as an illustration of thelkitis
use and as groundwork for an upcoming UCD study.

PRELIMINARY INVESTIGATION OF IMA DESIGN

The toolkit was used to create an IMA intended to
collaboratively control a custom software musictegs
with a musician. The system for which the IMA was
designed was created using the Max platform (seeejb
and a screenshot of its user-interface is shoviigare 1.
There are 97 parameters on the interface, whichbean
controlled during the course of a performance. €ra®
(A) a set of 11 binary-valued parameters (checkebpx
used to turn on and off instruments and effecty; 4B
integer-valued parameter, used to control the rhigh
output of a drum machine; (C) a bank of 84 binaajued
parameters used to route the signals between ftwease
instruments and effects; (D) an integer-valued patar
associated with one of the effects.

In the following, we highlight a number ways in whi
the musician incorporated his knowledge both of the
software music system and of his own style of penfog
with it, into the IMA design process. The first dps
decision was to set the interval between decisinag, as
this determines how the example performances ar
recorded. The interval was set to be the lengtlorad
repeat of the music’s harmonic structure, so theAIM
would update its parameters at the beginning oheac
repetition. Next, ten example performances wererdsd
using the system. Each example comprised the valfies
all parameters, sampled at each decision time.

What followed was an iterative process of adjusting
variable definitions and the parameters of the rimech
learning algorithms, until a satisfactory IMA retgal. At
each design iteration, the musician used his mbusica
knowledge to aid the design process. For exampke, t
overall structure of the music was dictated by ten
particular binary-valued parameters. These comlothe

; . C
presence or absence of the most musically sallentC

instruments and audio effects. These parameterg wer
configured as a subgroup (see previous sectionyder
that dependencies between them could be found mo
easily.

The musician also identified that the temporal atioh
of the music was primarily related to four paramgtéhe
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controls of the bass drum, the bass instrument)ehe
melody instrument and the rhythmic output of therar
machine. A temporal model (VMM) was created forteac
of these parameters so that their values wouldveviol a
way that was similar to the examples.

The control of the bank of 84 binary-valued pararet
provides a good example of how ingenuity can
compensate for a scarcity of training data. These
parameters were altered only a few times duringpecal
performance and with little data, no dependencies
between them could be found. A useful musical inisig
was that the precise configuration of the paramsetid

not greatly effect on the music produced (they tyain
contributed to subtle variation), but rather thenber of
parameters set to 1 (not 0) was a musically salient
guantity. To use this insight, an additional valealwas
defined as the sum of the values of the parametdise
bank, and a temporal model was created for this sum
variable. Thus, while the precise configurationtloése
parameters was randomly selected, the structure was
controlled by temporal modelling of the sum varabl

A similar insight was that the integer-valued pagten
(item D above) only contributed to subtle variatiorthe
music. The ARL algorithms could find no meaningful
dependencies involving this parameter. Instead defmo
was created so that its value was chosen from a
probability distribution calculated from the exaegl

Properties of the resulting IMA

Decisions made during the design of the IMA, greatl
affected the manner in which generalized from the
training examples. By this we mean the extent tickwh
the IMA’s behavior reflects the underlying interft the
musician. This can be understood by consideringtise
in which a high-order temporal model is created dtr
variables, and the ARL algorithms are configuredirid
all possible rules. In this case only configurasioof
parameter values seen in the example data woulcsdx
by the IMA, and the music produced would be extigme
similar, if not identical to the examples. Convéysd no

Eiemporal models or rules were created, the IMA woul

randomly choose parameter configurations. The desig
process can be seen in part as a search for acbalan
between these two extremes; one in which the IMA
performs with more variety than is illustrated ihet
examples, while behaving in a musically approprigas .

The IMA that resulted from the design process just
described did generalise significantly from the rapées.
For example, for one particular group of ten of thest
actively used binary-valued parameters (used to tur
and off instruments and effects), there are 10Xkipte
configurations. Only 87 unique configurations were
present in the example data, however the finabkailes
oncerning these parameters allowed for 136 diftere
onfigurations (over 1.5 times more). In additiemce
temporal models were created for only a small det o
variables, the variety of time-trajectories of paeder

r%onﬁgurations was much greater than that in th@ing

examples. While the use of the sum variable torobtite
bank of 84 binary-valued parameters was an
approximation, the resulting control worked welt |



would have been possible to explore more complexexamples and his/her answers are used to confihere

solutions (a sum variable per column of the matfix,
instance, and the discovery of dependencies betieen
sum variables) but this was not found to be necgssa

Issues identified during the design process

While the toolkit does not require any programming
expertise, the musician was required to reflecttiom
music system and introspect about his manner ginga

it, in quite a technical manner. It was necessary t
consider which parameters might depend most upen on
another, and what mathematical combinations of
parameter values might be musically salient. Thisdt a
practise to which we expect many musicians are
accustomed. In addition, the computational expenhsee
real-time performance engine places a practicai lan

the number of rules in an IMA specification. Duritige
design process, a number of models had to be disdar
due to this. The musician was required to arrivenate
efficient IMAs by grouping the variables differentl
Finally, real-time interaction with the IMA was thoamly
evaluation method. Due to the probabilistic natfr¢he
IMA’s actions, it occasionally took a long time to
discover undesirable aspects of its behaviour.

DISCUSSION

While we know of no other tools available for IMA,
design, Fiebrink’sWekinator software (Fiebrink et al.,
2011) is a similar tool for the mapping of musical
gestures to sound synthesis parameters. It isthétrof a
comprehensive CHI-oriented investigation into tise of
IML in computer music applications. The software
includes a number ofsupervised machine learning
algorithms which were chosen with the mapping task
mind, and they are not suitable for thesupervised
machine learning problems that IMA design entails.

We plan to conduct a UCD study which aims to (i)
identify creative workflow scenarios in which the
interactive design of an IMA can lead to new and
stimulating outcomes for practicing musicians, &y
address the issues identified above through
experimentation with interfaces, representationsthef
data and working paradigms.

For (i) our study will be established in the contex a
real working scenario for electronic musicians. The
popular  performance  platform  Ableton Live
(www.ableton.com) provides users with a simple
interface for layering and sequencing musical elgse
(“clips” in their terminology) in real-time, meargnthat
our toolkit can be directly incorporated into anlétbn
Live project. Having trained users with the profmy
system we will investigate their ability to achieame IMA
design task, and will also respond to new uses toaye

up with themselves.

For (i) we will first focus on users’ responses to
representations of the data associated with thaltires
IMA specification. A set of preliminary calculatisrwill

be added which would enable the toolkit to sugtiksly
variable subgroups to the musician. Additionallynew
design phase might be introduced in which the niausic
is asked a series of non-technical questions abwait

189

variables and algorithms.

We will consider techniques to visualise the parame
configurations given by the ARL-derived rules.
Generally, the allowed parameter configurationd

too numerous to display, but techniques exist witigh

be used to find the most diverse configurationevadid

by a given rule set (Hebrard et al., 2005). These
configurations could be visualised by overlayingrthon

the user-interface, thus giving the musician arcetibn

of how the IMA generalises from the examples.

CONCLUSION

This paper has presented a prototype softwareitahbt
we have developed to enable non-technical musidians
design IMAs. Its use has been illustrated in aipriehry
investigation in which an IMA was designed to
collaboratively play an electronic music systemisTias
helped us identify issues to address in a useradnt
design study, which we plan to conduct in Spring220
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