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ABSTRACT 
We have developed a prototype software 
non-technical users to design artificially intelligent agents 
to perform electronic music in collaboration with a 
human musician. In this paper we describe the toolkit and
present a preliminary investigation of 
discuss how the investigation has helped identify issues to 
address in an upcoming user-centred design study
will take place in Spring 2011. 
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INTRODUCTION 
An interactive musical agent (IMA) 
intelligent software system for 
interactively with a human performer. 
developed a great variety of IMAs for performing 
different interactive musical roles. In the literature, we 
find IMAs that act as artificial improvisers that can take 
the place of a jazz improviser in a live performance 
scenario (Lewis 2000), musical accompanists designed to 
provide backing music while a human mus
(Toiviainen 1998), as well as a wide variety of 
experimental IMAs that can take part in live music 
performance, but do not fulfil traditional musical roles 
(Blackwell et al., in press).  

For musicians interested in using new tech
work, the area of IMAs is an exciting 
IMAs are not readily available either as commercial 
products or as resources in the public domain
are complex to design. They are generally the result of 
research projects conducted by techn
musicians (i.e. those proficient in computer programming 
and algorithms), and they are most often
the direct involvement of, their creators.
examples in the literature of interactive music programs 
which do not require technical expertise, and 
behaviour can be influenced by a musician in a limited 
way: they mimic the musician’s style of performance 
either on an acoustic instrument (Pachet, 2003) or a 
software one (Martin et al., 2011). However,
currently possible for non-technical musicians
IMAs for use in their own work. In this paper, we address 
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software toolkit to enable 
technical users to design artificially intelligent agents 

in collaboration with a 
. In this paper we describe the toolkit and 

 its use. We then 
has helped identify issues to 
centred design study, which 

musical interaction 

Methodologies and 

 is an artificially 
 playing music 
. Researchers have 

developed a great variety of IMAs for performing 
interactive musical roles. In the literature, we 

find IMAs that act as artificial improvisers that can take 
the place of a jazz improviser in a live performance 

), musical accompanists designed to 
provide backing music while a human musician performs 

), as well as a wide variety of 
experimental IMAs that can take part in live music 
performance, but do not fulfil traditional musical roles 

technology in their 
IMAs is an exciting one. However, 

IMAs are not readily available either as commercial 
products or as resources in the public domain, and they 

. They are generally the result of 
technically proficient 

(i.e. those proficient in computer programming 
most often used by, or with 
their creators. There are 

examples in the literature of interactive music programs 
require technical expertise, and whose 

by a musician in a limited 
hey mimic the musician’s style of performance 

either on an acoustic instrument (Pachet, 2003) or a 
However, it is not 

technical musicians to design 
In this paper, we address 

the question: How can a non-
an IMA and furthermore, how can this development fit 
into a creative workflow? Central
challenge of enabling the user to overcome the technical 
complexity of IMA design. 

One promising approach would be 
musician to prescribe the behaviour of an IMA by simply 
providing examples of that behaviour.
this is achieved using machine learning techniques.
However, aside from the fact that a prohibitive amount of 
example data would often be required, most creative 
practitioners do not begin with a fully conceived idea of a 
finished product, which then only requires precise 
specification in order to be realised. Rather, they begin 
with some initial ideas and then follow an iterative design 
process involving modification and testing until a 
satisfactory product is arrived at. With this in mind, 
minimum requirement to be consistent with the 
musician’s creative workflow, a tool for designing
should take the design-by-example
point, but also provide the musician
through modification and testing stag
design.  

Figure 1. User interface of a software music system
could be controlled by a musician and an IMA

The labels A-D are referred to in 

In this paper we present a prototype 
IMAs intended to perform live electronic music in 
collaboration with a human musician
use. We consider the common 
which pre-prepared musical elements are controlled at a 
high-level. In other words,
sequences, audio effects and 
musical elements) are mixed together and arranged to 
create complete musical works. 
example software music system 
control is shown in Figure 1. In this software, the musical 
elements are parametrically controlled
performance the IMA would be assigned 
subset of the parameters. It 
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-technical musician develop 
an IMA and furthermore, how can this development fit 

Central to this is the CHI 
challenge of enabling the user to overcome the technical 

would be for a non-technical 
to prescribe the behaviour of an IMA by simply 

providing examples of that behaviour. Computationally, 
this is achieved using machine learning techniques. 
However, aside from the fact that a prohibitive amount of 

be required, most creative 
practitioners do not begin with a fully conceived idea of a 

then only requires precise 
specification in order to be realised. Rather, they begin 
with some initial ideas and then follow an iterative design 
process involving modification and testing until a 
satisfactory product is arrived at. With this in mind, as a 
minimum requirement to be consistent with the 
musician’s creative workflow, a tool for designing IMAs 

example approach as a starting 
musician the ability to iterate 

modification and testing stages to improve the 

 

of a software music system which 
a musician and an IMA in tandem. 

D are referred to in the text. 

prototype toolkit for designing 
perform live electronic music in 

musician and investigate its 
common performance context in 

prepared musical elements are controlled at a 
words, audio samples, MIDI 

 algorithmic processes (i.e. 
mixed together and arranged to 

create complete musical works. The interface for an 
software music system that supports this kind of 

In this software, the musical 
rically controlled. For collaborative 

he IMA would be assigned control of a 
 would be responsible for 
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choosing new values for those parameters at certain 
decision times during the performance. 

In the following sections, we describe the toolkit, and 
outline some of the ways in which a musician can 
incorporate his/her musical knowledge into IMA design. 
We then report on a preliminary investigation in which an 
IMA was designed for the software music system whose 
interface is shown in Figure 1. This serves to illustrate the 
use of the toolkit, and to identify issues that we intend to 
address in an upcoming user-centred design (UCD, see 
e.g. Vredenburg et al., 2002) study, discussed in the final 
section. 

A PROTOTYPE TOOLKIT FOR IMA DESIGN 
As mentioned above, the design-by-example approach 
requires the use of machine learning. The paradigm in 
which a human interacts with machine learning 
algorithms in order to iteratively arrive at a satisfactory 
result is known as interactive machine learning (IML, 
Fails and Olsen, 2003). In this section, we describe a 
prototype toolkit for IMA design, which incorporates 
appropriate machine learning algorithms to support the 
following proposed workflow (see Figure 2): The 
musician begins by creating a set of examples of musical 
performances that illustrate “good” musical behaviour. 
He/she then configures a set of machine learning 
algorithms, and runs them to produce a model for the 
behaviour of an IMA. The IMA may then be evaluated 
through real-time interaction. If the musician is not 
satisfied, he/she has three options. First, he/she may add 
more examples to better illustrate the desired behaviour. 
Second, he/she may re-configure the machine learning 
algorithms to improve the chances of discovering the 
important patterns in the example performances. Finally, 
the musician may manually alter the behaviour model.  

 

Figure 2. The interactive machine learning workflow 
supported by the toolkit.  

A relevant context in which to apply this workflow is 
given by Pressing’s (1988) model of musical 
improvisation. In this model, an improvisation is 
represented as a series of non-overlapping sections called 
event clusters, which are pre-defined sets of musical 
events. For improvisation with acoustic instruments, 
events are usually musical notes or articulations. At 
frequent decision times during a performance, the 
improviser chooses the next event cluster that will take 
place. The actual execution of the event cluster is 
deferred to lower level motor control mechanisms which 
operate at a speed faster than conscious decision making. 

The activity of electronic musicians arranging musical 
elements in time, described in the previous section, is 
equivalent to this model of an instrumental improviser, 
with musical elements taking the place of the performer’s 
low-level motor control, but the high-level structuring 
process being essentially the same. This act of arranging 
musical elements by an electronic musician can be broken 
into two components: the choice of valid combinations of 
musical elements according to musical constraints and the 
sequencing of those combinations over time. 

We define an IMA specification as a prescription for the 
way in which an IMA chooses new values for the 
parameters under its control. In our toolkit, an IMA 
specification comprises three parts: (i) a set of musically 
salient variables, (ii) a set of probabilistic temporal 
models describing how these variables change over time, 
and (iii) a set of deterministic rules describing 
interdependencies between the variables. The first of 
these is manually defined by the musician, while the 
second and third are learnt by machine learning 
algorithms, which have been configured by the musician. 
Thus, in creating each part the musician can incorporate 
his/her musical knowledge into the IMA. We now 
describe each part in turn and then summarise the 
functionality of the real-time performance engine, which 
is the component used to interactively run an IMA. 

The set of variables includes the values of the parameters 
under the control of the IMA and those being controlled 
by the musician. In addition, other quantities may be 
included which are considered to be relevant to musical 
decision making. These may be numerical descriptions of 
the music, such as the output of “machine listening” 
signal processing analyses (e.g. noisiness or loudness), 
the output of probabilistic algorithmic processes in the 
system, or the products of mathematical operations on 
these quantities (there is a pre-defined set of such 
operations). 

Our probabilistic temporal models are variable order 
Markov models (VMMs, Ron et al., 1996). A VMM uses 
the current and past values of a variable to give the 
possible next values and their probabilities. The musician 
incorporates his/her musical knowledge into the IMA by 
choosing the variables which will be modelled by VMMs 
and the parameters of the VMMs.  

Finally, the rules describing the dependencies between 
variables are learnt from the example data using 
association rule learning (ARL) algorithms (see e.g. 
Hastie et al., 2009). These algorithms can discover 
dependencies between the variables in the IMA 
specification. The dependencies discovered are in the 
form of  “implies rules”, for example: 

Bassdrum: On AND Hihat: On � Snare drum: On 

which can be read: “if the bass drum is sounding and the 
hi-hat is sounding then the snare drum must be sounding 
too” (the rules derived by the toolkit are generally more 
complex). A set of such rules defines a set of “allowed” 
variable value configurations. The musician can influence 
the rule discovery process by setting certain parameters of 
the ARL algorithms and also by choosing subgroups of 

4. Edit the IMA 
specification 

2. Configure machine 
learning algorithms 

1. Create / 
Edit training 

examples 

3. Run machine learning 
algorithms 

5. Evaluate behaviour using real-time engine 
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variables, amongst which he/she thinks salient rules are 
likely to be found.  

Once an IMA specification has been created, it can be run 
using the real-time performance engine. This component 
of the toolkit is a piece of software that can interact in 
real-time to control parameter values according to an 
IMA specification and with respect to the values of the 
musician-controlled parameters at each decision point. It 
is based on a software library (www.emn.fr/z-info/choco-
solver) for solving constraint satisfaction problems (see 
e.g. Apt, 2003). It was implemented as a plugin for Max 
(www.cycling74.com), which is a common platform for 
the development of novel interactive music systems. 

We now report on a preliminary investigation in which 
the toolkit was used by one of the authors to design an 
IMA to collaboratively play an electronic music system. 
This is presented both as an illustration of the toolkit’s 
use and as groundwork for an upcoming UCD study. 

PRELIMINARY INVESTIGATION OF IMA DESIGN 
The toolkit was used to create an IMA intended to 
collaboratively control a custom software music system 
with a musician. The system for which the IMA was 
designed was created using the Max platform (see above) 
and a screenshot of its user-interface is shown in Figure 1. 
There are 97 parameters on the interface, which can be 
controlled during the course of a performance. These are 
(A) a set of 11 binary-valued parameters (check boxes) 
used to turn on and off instruments and effects; (B) an 
integer-valued parameter, used to control the rhythmic 
output of a drum machine; (C) a bank of 84 binary-valued 
parameters used to route the signals between the software 
instruments and effects; (D) an integer-valued parameter 
associated with one of the effects. 

In the following, we highlight a number ways in which 
the musician incorporated his knowledge both of the 
software music system and of his own style of performing 
with it, into the IMA design process. The first design 
decision was to set the interval between decision times, as 
this determines how the example performances are 
recorded. The interval was set to be the length of one 
repeat of the music’s harmonic structure, so the IMA 
would update its parameters at the beginning of each 
repetition. Next, ten example performances were recorded 
using the system. Each example comprised the values of 
all parameters, sampled at each decision time. 

What followed was an iterative process of adjusting the 
variable definitions and the parameters of the machine 
learning algorithms, until a satisfactory IMA resulted. At 
each design iteration, the musician used his musical 
knowledge to aid the design process. For example, the 
overall structure of the music was dictated by ten 
particular binary-valued parameters. These controlled the 
presence or absence of the most musically salient 
instruments and audio effects. These parameters were 
configured as a subgroup (see previous section) in order 
that dependencies between them could be found more 
easily. 

The musician also identified that the temporal evolution 
of the music was primarily related to four parameters: the 

controls of the bass drum, the bass instrument, the lead 
melody instrument and the rhythmic output of the drum 
machine. A temporal model (VMM) was created for each 
of these parameters so that their values would evolve in a 
way that was similar to the examples. 

The control of the bank of 84 binary-valued parameters 
provides a good example of how ingenuity can 
compensate for a scarcity of training data. These 
parameters were altered only a few times during a typical 
performance and with little data, no dependencies 
between them could be found. A useful musical insight 
was that the precise configuration of the parameters did 
not greatly effect on the music produced (they mainly 
contributed to subtle variation), but rather the number of 
parameters set to 1 (not 0) was a musically salient 
quantity. To use this insight, an additional variable was 
defined as the sum of the values of the parameters in the 
bank, and a temporal model was created for this sum 
variable. Thus, while the precise configuration of these 
parameters was randomly selected, the structure was 
controlled by temporal modelling of the sum variable. 

A similar insight was that the integer-valued parameter 
(item D above) only contributed to subtle variation in the 
music. The ARL algorithms could find no meaningful 
dependencies involving this parameter. Instead a model 
was created so that its value was chosen from a 
probability distribution calculated from the examples. 

Properties of the resulting IMA 
Decisions made during the design of the IMA, greatly 
affected the manner in which it generalized from the 
training examples. By this we mean the extent to which 
the IMA’s behavior reflects the underlying intent of the 
musician. This can be understood by considering the case 
in which a high-order temporal model is created for all 
variables, and the ARL algorithms are configured to find 
all possible rules. In this case only configurations of 
parameter values seen in the example data would be used 
by the IMA, and the music produced would be extremely 
similar, if not identical to the examples. Conversely, if no 
temporal models or rules were created, the IMA would 
randomly choose parameter configurations. The design 
process can be seen in part as a search for a balance 
between these two extremes; one in which the IMA 
performs with more variety than is illustrated in the 
examples, while behaving in a musically appropriate way. 

The IMA that resulted from the design process just 
described did generalise significantly from the examples. 
For example, for one particular group of ten of the most 
actively used binary-valued parameters (used to turn on 
and off instruments and effects), there are 1024 possible 
configurations. Only 87 unique configurations were 
present in the example data, however the final set of rules 
concerning these parameters allowed for 136 different 
configurations (over 1.5 times more). In addition, since 
temporal models were created for only a small set of 
variables, the variety of time-trajectories of parameter 
configurations was much greater than that in the training 
examples. While the use of the sum variable to control the 
bank of 84 binary-valued parameters was an 
approximation, the resulting control worked well. It 



189 

 

would have been possible to explore more complex 
solutions (a sum variable per column of the matrix, for 
instance, and the discovery of dependencies between the 
sum variables) but this was not found to be necessary. 

Issues identified during the design process 
While the toolkit does not require any programming 
expertise, the musician was required to reflect on the 
music system and introspect about his manner of playing 
it, in quite a technical manner. It was necessary to 
consider which parameters might depend most upon one 
another, and what mathematical combinations of 
parameter values might be musically salient. This is not a 
practise to which we expect many musicians are 
accustomed. In addition, the computational expense of the 
real-time performance engine places a practical limit on 
the number of rules in an IMA specification. During the 
design process, a number of models had to be discarded 
due to this. The musician was required to arrive at more 
efficient IMAs by grouping the variables differently. 
Finally, real-time interaction with the IMA was the only 
evaluation method. Due to the probabilistic nature of the 
IMA’s actions, it occasionally took a long time to 
discover undesirable aspects of its behaviour. 

DISCUSSION 
While we know of no other tools available for IMA, 
design, Fiebrink’s Wekinator software (Fiebrink et al., 
2011) is a similar tool for the mapping of musical 
gestures to sound synthesis parameters. It is the result of a 
comprehensive CHI-oriented investigation into the use of 
IML in computer music applications. The software 
includes a number of supervised machine learning 
algorithms which were chosen with the mapping task in 
mind, and they are not suitable for the unsupervised 
machine learning problems that IMA design entails. 

We plan to conduct a UCD study which aims to (i) 
identify creative workflow scenarios in which the 
interactive design of an IMA can lead to new and 
stimulating outcomes for practicing musicians, and (ii) 
address the issues identified above through 
experimentation with interfaces, representations of the 
data and working paradigms.  

For (i) our study will be established in the context of a 
real working scenario for electronic musicians. The 
popular performance platform Ableton Live 
(www.ableton.com) provides users with a simple 
interface for layering and sequencing musical elements 
(“clips” in their terminology) in real-time, meaning that 
our toolkit can be directly incorporated into an Ableton 
Live project. Having trained users with the prototype 
system we will investigate their ability to achieve an IMA 
design task, and will also respond to new uses they come 
up with themselves.  

For (ii) we will first focus on users’ responses to 
representations of the data associated with the resulting 
IMA specification. A set of preliminary calculations will 
be added which would enable the toolkit to suggest likely 
variable subgroups to the musician. Additionally, a new 
design phase might be introduced in which the musician 
is asked a series of non-technical questions about the 

examples and his/her answers are used to configure the 
variables and algorithms. 

We will consider techniques to visualise the parameter 
configurations given by the ARL-derived rules. 
Generally, the allowed parameter configurations will be 
too numerous to display, but techniques exist which can 
be used to find the most diverse configurations allowed 
by a given rule set (Hebrard et al., 2005). These 
configurations could be visualised by overlaying them on 
the user-interface, thus giving the musician an indication 
of how the IMA generalises from the examples. 

CONCLUSION 
This paper has presented a prototype software toolkit that 
we have developed to enable non-technical musicians to 
design IMAs. Its use has been illustrated in a preliminary 
investigation in which an IMA was designed to 
collaboratively play an electronic music system. This has 
helped us identify issues to address in a user-centred 
design study, which we plan to conduct in Spring 2011. 
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