
PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES FOR
INTERACTIVE MUSIC SYSTEMS

Aengus Martin, Craig Jin, André van Schaik

School of Electrical and Information Engineering,
Sydney University, NSW 2006, Australia

William L. Martens

Faculty of Architecture, Design and Planning,
Sydney University, NSW 2006, Australia

ABSTRACT

Partially observable Markov decision processes provide a
mathematical framework for interaction under uncertain con-
ditions. In this paper we demonstrate their use as a conve-
nient mechanism to control the behaviour of an interactive
music system, where otherwise it might be required to use
ad-hoc heuristic schemes which are difficult to manage and
fine-tune.

1. INTRODUCTION

In artificial intelligence, an agent is “anything that can be
viewed as perceiving its environment through sensors and
acting upon that environment through effectors” and a ra-
tional agent is one which acts to achieve certain goals [9].
An interactive music system [8] (IMS) designed to impro-
vise alongside a musician is an example of a rational agent.
It must act to achieve its musical goals, as set by its de-
signer. This can mean making choices related to style, har-
mony, rhythm or any musical attribute. Such choices should
use knowledge of (i) the behaviour of the musician and (ii)
his likely responses. The partially observable Markov de-
cision process1 (POMDP) is a mathematical model of the
interaction between an agent and its environment. It pro-
vides a mechanism by which the agent can be programmed
to act optimally with respect to a set of goals. This pa-
per reports on an investigation into the use of POMDPs in
IMSs designed to improvise alongside a musician. To our
knowledge, POMDPs have not previously been applied in
this area.

The designers of IMSs do not always publish the precise
mechanisms by which musical choices are made. Many are
based on complex combinations of heuristic and stochas-
tic processes, such as Lewis’ Voyager [7]. Collins [1] de-
scribes a number of systems including Free improvisation
simulation which involves improvising agents with human-
like characteristics such as ‘keenness’, ‘shyness’, and ‘insu-
larity’. In the following, we will show that the POMDP is a
convenient mechanism for designing and tuning behavioural

1The POMDP model originated in the area of operations research and
there is a large body of literature on their application and solution. A good
starting point is [4].

traits such as these, where otherwise ad-hoc combinations of
heuristics might be required.

Models related to the POMDP include hidden Markov
models (HMMs) and Markov decision processes (MDPs).
HMMs can also be used to take advantage of knowledge
of musical behaviour. They have been used in this way to
improve the identification of chords and keys in recorded
music [6]. However HMMs cannot account for the effects
that an agent’s actions might have on a musician and they
cannot be used to specify musical goals. MDPs have been
used as the basis of a four-part harmony generator [12] but
we have found no reference in the literature to their use in
interactive music applications.

The structure of this paper is as follows. First we de-
scribe a simple IMS which plays music along with an im-
provising musician. The system uses information about the
musician’s performance to choose the key in which it will
play. We use a POMDP model in the module which chooses
the key. This module is described in detail in Section 3.
In Section 4 we describe the software developed to allow
POMDPs to be used in the Max2 interactive platform. We
then present some informal observations made while using
our IMS. Finally we discuss the application of POMDPs to
other interactive computer music scenarios and conclude.

2. THE TONAL IMPROVISING SYSTEM

We have implemented a simple interactive music system on
the Max platform. We refer to it as the Tonal Improvising
System (TIS, see Figure 1). It is designed for use by a musi-
cian playing a monophonic, MIDI-enabled instrument. He
plays along with a metronome which sets the beat of the
music. The TIS receives the MIDI note data associated with
his performance. Every two bars, a key-finding module es-
timates the key in which the musician has been playing over
the previous two bars. Then a key-choosing module uses
this estimate to choose the key in which the TIS will play.
It is in the key-choosing module that a POMDP is used. Fi-
nally, an improvisation-generating module takes the chosen
key as input, and outputs a synthesized ‘improvisation’ in
that key. This system will now be described in detail.

2www.cycling74.com

Key-finding
module

Key-
choosing
module

Improvisation-
generating

module

Tonal Improvising System

MIDI
data

key
estimation

key
instruction

Metronome

Figure 1. Schematic of the tonal improvising system.

The key-finding module is an implementation of the key-
finding method due to Krumhansl [5]. Out of the large se-
lection of algorithms available [11], we chose this method
for its simplicity and ease of implementation in Max. Our
implementation works as follows. The MIDI note data pro-
duced by the musician’s performance is analysed in two-bar
segments. For each segment, a 12-vector is calculated, in-
dicating the length of time spent during the segment in each
pitch class. The correlation between this vector and each
of 24 key-profiles (for details, see [5]) is calculated. The
key corresponding to the key-profile which gives rise to the
highest correlation is deemed to be the key of the segment.

The key-choosing module chooses the key in which the
TIS will play for the following two bars. It uses a POMDP
model to define a mapping from the key estimate to the key
in which the TIS should play. This mapping is governed
by the parameters of the POMDP, which are set by the sys-
tem designer. The POMDP model is described in Section 3.
Each time the key is re-estimated, the key-choosing module
outputs one of 25 possible instructions to the improvisation-
generating module. There is one instruction of the form
“play in key X” for each musical key and an additional in-
struction which indicates that no specific key should be played.
We refer to this as the non-specific key instruction.

The improvisation-generating module takes instructions
from the key-choosing module as input. It remains silent
when it receives the non-specific key instruction and for the
remaining instructions it plays the root note of the specified
key once on each beat. This extremely simple generator is of
little musical interest but was sufficient to experiment with
the TIS. The output of the improvisation-generating module
can be heard by the musician via a loudspeaker.

3. CHOOSING THE KEY IN WHICH TO PLAY

The POMDP is a discrete-time model of the interaction be-
tween an agent and its environment. The TIS is an agent
and the ‘environment’ with which it interacts is the musi-
cian. It perceives the musician using the key-finding mod-
ule and it acts upon the musician by controlling the key used
by the improvisation-generating module. According to the
POMDP model (see Figure 2), the environment exists at
time ti in a particular state, si. The agent makes an obser-
vation, oi, at time ti which provides some information about
the current state of the environment. The agent uses the ob-

servation to choose an the action to take, ai. This action has
an effect on the environment so that later on, at time ti+1, the
environment has transitioned to a new state, si+1, which is
probabilistically dependant on the action taken and the pre-
vious state. The agent then makes a new observation, oi+1
and chooses a new action, ai+1, and so on. This process is
governed by the parameters of the POMPD model which are
denoted by (S , O , A , T, Z, R, γ , b0). These quantities are
defined in the following.

at-1si-1 si si+1

oi-1 oi oi+1

ai-1 ai ai+1

= observation

= hidden state

= action

time
t i-1 t i t i+1

Figure 2. The POMDP model. Arrows indicate probabilis-
tic influence.

The parameter S is a set containing the discrete states
in which the environment can exist. In the TIS, the state
of the environment is a representation of the key in which
the musician is playing. There are 25 states, one for each
musical key and an inactive state which indicates that the
musician is not playing. The parameter O is a set containing
the discrete observations that the agent can make. In the
TIS, the observations are the possible outputs of the key-
finding module. There are also 25 of these, one for each
key and a silent observation to indicate that no notes have
been played over the last two bars. Finally, the parameter A
contains the actions available to the agent. In the TIS, the
set of actions contains the possible instructions that can be
sent to the improvisation-generating module. As described
in Section 2, there are 25 of these, one for each key as well
as the non-specific key instruction.

The parameter T is the transition probability function.
This describes the probabilistic dependance of the state of
the environment at time ti+1 on the state at time ti and the
action taken at time ti. That is, T(si+1,si,ai) = P(si+1|si,ai),
where P(x) denotes the probability of x. The transition prob-
abilities can be set by hand, or by some algorithm which
learns the behaviour of the environment. In the TIS, they
were set by hand such that it is most likely that the musician
will remain in the same key rather than change key. From
the inactive state, the transition to any other state is equally
likely. There is also an increased likelihood that the musi-
cian will change to, or remain in the key played by the TIS.

The parameter Z is the observation probability function.
This describes the probabilistic dependance of the observa-
tion made at time ti, on the state at time ti and the action
taken at time ti−1. That is, Z(oi,si,ai−1) = P(oi|si,ai−1).
For the TIS, the observation probabilities were simplified
so that Z(oi,si,ai−1) = P(oi|si), i.e. the observations were
made independent of the previous action. The probability

of making the silent observation when the musician is in the
inactive state was set to unity. For the other observations,
the vales of P(oi|si) were set by estimating the error rates of
the key-finding module. This was done as follows. For each
state s, corresponding to a key ks, five thousand sequences of
16 equal-length notes were generated. Each sequence was
generated by using the Krumhansl key-profile (see [5]) for
ks as a discrete probability distribution and sampling from it
16 times. The key-finding module was then used to estimate
the key of each sequence. The probability P(o|s) of making
observation o, corresponding to key ko, when the musician
is in state s, was set equal to Nko/5000, where Nko was the
number of times the key-finder gave ko as its estimate. The
observation probabilities obtained in this way for the keys
C-major and C-minor are shown in Figure 3.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25
(a) Major

Observation Number

Pr
ob

ab
ilit

y

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25
(b) Minor

Observation Number

Pr
ob

ab
ilit

y

Figure 3. The estimated probabilities of each key being ob-
served when the actual key is (a) C-major and (b) C-minor.
Observations 1-12 are the 12 major keys, starting with C,
and 13-24 are the 12 minor keys, starting with C.

The parameter R is the reward function. This is a real-
valued function of the current state and the chosen action,
R(s,a) and it describes the benefit of the agent performing
action a when the environment is in state s. The agent uses
the reward function to choose the optimal action to take (see
below). In the TIS, the reward function was configured so
that there is a positive reward, r+, for playing in the same
key as the musician, and a negative reward, r−, for playing
in a different key. A reward of zero was set for the non-
specific action, independent of the state.

Usually, an agent acts so as to maximise the rewards ob-
tained for actions taken over some time in the future. In
many situations the rewards gained for future actions are
considered less valuable than those gained for immediate
actions. To allow for this, an additional parameter is in-
cluded in the POMDP model. It is called the discount, γ

(0≤ γ ≤ 1), and it describes the value of future rewards rel-
ative to immediate ones. A value of 1 means that future
rewards are considered to be equal in value to immediate
ones. A value of 0 means that only the immediate rewards
have value. Non-zero discount models are used in situations
where the agent is required to take into account the future
states of the environment. The TIS is only required to play
in the correct key at the current time, so a discount of zero
is used.

Finally, a POMDP-based agent operates by maintaining
a belief state, b(s), which is a discrete probability distribu-
tion over the states in which the environment might exist.
The parameter b0 is the initial belief state. After each ac-
tion is taken and a new observation is made, the belief state
is updated (see [4] for details). To choose an action, the
agent refers to a policy which is a mapping from belief state
to action. The optimal policy is one which will maximise
the rewards obtained. In general, finding the optimal pol-
icy is a computationally demanding task, albeit one which
can be done offline (see, e.g. [10]). However, for models
with γ = 0, such as that used in the TIS, the optimal action
is simply the one which maximises the expected immediate
reward, given by Σs∈S b(s).r(s,a).

4. SOFTWARE IMPLEMENTATION

To implement the key-choosing module, we developed a
new object for Max called pomdp.decider. This object is
used as follows. First, a POMDP model must be created
and stored in a text file using the file format developed by
Cassandra3. This file is then loaded into an instance of the
pomdp.decider object in Max. If the model has a discount of
zero, pomdp.decider can calculate the optimal action with-
out a policy being explicitly set. Otherwise, a policy must
be supplied by the user. There are a number of freely avail-
able POMDP solvers which can calculate optimal policies,
including zmdp [10]. The pomdp.decider object has the abil-
ity to read policy files in the format output by zmdp. Once
the model and policy (if it is required) have been loaded,
pomdp.decider can be used. It takes integers representing
observations as input and outputs integers indicating actions
to take. The pomdp.decider object will be made freely avail-
able, along with more detailed usage instructions.

5. USING THE TONAL IMPROVISATION SYSTEM

The TIS is a toy system developed to experiment with the
use of POMDPs in an IMS. Our aim was to investigate (i)
how the reward function could be used to control the be-
haviour of the system, and (ii) how the transition and the
observation probability functions would allow the system
to take into account knowledge of the musician’s behaviour
and the accuracy of the key-finding module, respectively.
This was done by informal experimentation with the system.

To investigate the effect of changing the reward function,
the magnitude of r− (see Section 3) was varied. When it was
increased, the system tended to choose the non-specific key
action unless the belief state had a peak close to unity for
a particular key. When it was decreased, the system tended
to choose the key with the highest probability, even if that
probability was not close to unity. Additionally, the system

3http://www.cassandra.org/pomdp/code/pomdp-file-spec.shtml

could be made to tend towards a particular key by reducing
the magnitude of r− for that key.

In the TIS, the transition probability function describes
the tendency of the musician to remain in the same key and
the effect of this is to dampen the change in the belief state
when a new observation is made. This was observed by
varying ps, which is the probability that the musician will
remain in the same key. With ps set close to unity, the belief
state changed very little, and as ps was reduced the damping
decreased.

The effect of the observation probability function was
studied by observing how the belief state changed for differ-
ent sequences of observations. For example, if five C-Major
observations are made and followed by an A-minor observa-
tion, the belief state changes very little. This is because ob-
servation probability function accounts for the tendency of
the key-finding module to misidentify C-Major as A-minor
(see Figure 3). However, if the five C-Major observations
are followed by a C#-minor observation, the change in the
belief state is greater, since the key-finding module is less
likely to misidentify C-Major as C#-minor.

6. DISCUSSION AND CONCLUSION

A POMDP model can be used to control musical behaviour
in many situations. For example, in systems which have mu-
sical style classifiers as their sensors such as those described
in [2] and [3], a POMDP model would take classifier ac-
curacy into account and it could use prior knowledge of a
musician’s tendencies and responses to inform its choices.
More generally, there are numerous advantages to using a
POMDP model in an IMS. The primary advantage is that
there are structured machine learning methods for finding
the optimal policy for selecting actions. In other words, in-
stead of having to focus on developing heuristic rules that
define a control policy, the designer can focus on the con-
crete aspects of the system which are the reward function,
the transition probability function and the observation prob-
ability function. These functions provide a conceptually
simple way for knowledge to be explicitly programmed into
the system. For example the transition probability func-
tion models the behaviour of the musician and the observa-
tion probability function models the accuracy of the musical
classifier. In addition, the musical goals of the designer can
be conveniently expressed using the reward function. In this
way, the task of programming an IMS to behave in a par-
ticular way is made conceptually more straightforward and
easier to fine-tune and maintain than would be the case if an
ad-hoc set of heuristics were used.

For most applications of POMDPs the reward function
is known, however for many interactive music systems it is
quite likely that the reward function will have to be learned.
For the TIS example in this paper, it was easy to establish
an appropriate reward function: positive for playing in the

correct key and negative for playing in the incorrect key.
However, if an IMS was required to act in some difficult-to-
define manner, such as adhere to a particular musical style,
we expect that a training procedure would be required in
which the system would learn the reward function as well as
the environmental responses. Further research is required to
examine the implications of learning the reward function.

7. REFERENCES

[1] N. Collins, “Towards autonomous agents for live com-
puter music: Realtime machine listening and interac-
tive music systems,” Phd Thesis, University of Cam-
bridge, 2006.

[2] R. Dannenberg, B. Thom, and D. Watson, “A machine
learning approach to musical style recognition,” Proc.
International Computer Music Conference, 1997.

[3] W. Hsu, “Two approaches for interaction management
in timbre-aware improvisation systems,” Proc. Inter-
national Computer Music Conference, 2008.

[4] L. Kaelbling, M. Littman, and A. Cassandra, “Plan-
ning and acting in partially observable stochastic do-
mains,” Artificial Intelligence, vol. 101, no. 1-2, pp.
99–134, 1998.

[5] C. L. Krumhansl, “Cognitive foundations of musical
pitch,” Oxford University Press, 1990.

[6] K. Lee and M. Slaney, “Acoustic chord transcription
and key extraction from audio using key-dependent
hmms trained on synthesized audio,” IEEE Transac-
tions on Audio, Speech, and Language Processing,
vol. 16, no. 2, pp. 291 – 301, Feb 2008.

[7] G. Lewis, “Too many notes: Computers, complex-
ity and culture in voyager,” Leonardo Music Journal,
vol. 10, pp. 33–39, Jan 2000.

[8] R. Rowe, “Interactive music systems,” MIT Press,
Cambridge, MA, 1993.

[9] S. J. Russell and P. Norvig, “Artificial intelligence: A
modern approach,” Upper Saddle River, New Jersey:
Prentice Hall, 2003.

[10] T. Smith, “Probabilistic planning for robotic explo-
ration,” PhD Thesis, Carnegie Mellon University,
2007.

[11] D. Temperley, “Music and probability,” MIT Press,
Cambridge, MA, 2007.

[12] L. Yi and J. Goldsmith, “Decision-theoretic harmony:
A first step,” International Journal of Approximate
Reasoning, pp. 1–12, Jul 2009.

	1 Introduction
	2 The Tonal Improvising System
	3 Choosing the key in which to play
	4 Software implementation
	5 Using the tonal improvisation system
	6 Discussion and Conclusion
	7 References

