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I. Introduction
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Trouble with Computational Models

Ancient Greek Geometry

– Ruler and Compass Model

Impossibility of squaring a circle (Lindemann 1882)
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Trouble with Computational Models

Ancient Greek Geometry

– Ruler and Compass Model

General Models of Computation

– Turing Machine Model (Church’s Thesis)

Models for Geometric Computing

– Real RAM model (not Church Equivalent!)

... the trouble begins
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The Numerical Nonrobustness Phenomenon

The trouble according to Numerical Analysts

“pitfalls”

The trouble according to Computational Geometers

“crashes, loops, topological errors”

Computational Geometry attacks (1980-2000)

... but what about Exact Computation?
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Exact Geometric Computation (EGC)

The EGC prescription

– Ensure all branches are error-free Rx

“Most general/successful solution”

– Encoded in libraries such as CGAL, LEDA, CORE

... therein lies the seed of our next challenge
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Barriers to EGC

EGC algorithms may not be Turing-computable

– “the Zero Problem”

EGC may be too inefficient

EGC requires full degeneracy analysis

Exact computation is unnecessary/inappropriate

...beyond EGC?
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Towards an alternative Computational Model

...but which model?

– Before developing top-down abstract models,

we propose a bottom-up look at examples!

2 classes of problems:

(A) algebraic

(B) combinatorial
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Towards an alternative Computational Model

A.1 Root isolation and clustering

– [ISSAC’06,’09,’11,’12,’16,’18; SNC’11, CiE’13, ICMS’18]

with V.Sharma, A.Eigenwillig, M.Sagraloff, R.Becker, J.Xu

A.2 Isotopic approximation of surfaces

– [ISSAC’08,SoCG’09,’12, SPM’12, ICMS’14,’18]

with V.Sharma, G.Vegter, M.Burr, S.Choi, L.Lin

B.1 Robot motion planning

– [SoCG’13, WAFR’14, FAW’15, WAFR’16]

Y.-J. Chiang, C.Wang, J.-M.Lien, Z.Luo, C.-H.Hsu, J.Ryan

B.2 Voronoi diagrams

– [ISVD’13, SGP’16]

V.Sharma, J.-M.Lien, E.Papadopoulou, H.Bennett
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Towards an alternative Computational Model

What is new and common?

– all subdivision algorithms!

– Soft Predicates (“Soft but not mush”)

– Local formulation (“search in a box”)

– Adaptive complexity (not worst case)

– Implementable (usually implemented)

– Practical (may match state of art)

– New theoretical foundations (“resolution-exactness”)

Escape from the Zero Problems!
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II

II. Soft Tools

“The history of the zero recognition problem is somewhat confused
by the fact that many people do not recognize it as a problem at

all.”

— Daniel Richardson (1996)
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Numerical and Interval Methods

Let f : Rn → R

(1) Set extension of f :

S ⊆ Rn 7→ f (S) ⊆ R

E.g., f ([−1, 1]× [3, 4]) = {f (x , y) : x ∈ [−1, 1], y ∈ [3, 4]}

(2) Interval extension of f :

f : Rn → R

satisfying two properties:

– Inclusion: f (B) ⊆ f (B)

– Convergence: limi→∞ f (Bi ) = f (limi→∞ Bi ) = f (p)
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Numerical and Interval Methods

Question of Effectivity

Need for approximate real numbers

– Use dyadic numbers (“bigFloats”):

F := {m2n : m, n ∈ Z}

– Effective intervals: F
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Subdivision Algorithms

What are subdivision algorithms?

– Generalized binary search, organized as a quadtree.

Figure: Mesh approximation of curve f (X ,Y ) = Y 2−X 2 +X 3 + 0.02 = 0
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Generic Subdivision Algorithm

Basic form

Input: (B0, ε, . . .)
Output: G

Initialize queue Q0 ← {B0}
Phase I.

Q1 ← SUBDIVIDE (Q0)

Phase II.

Q2 ← REFINE (Q1)

Phase III.

G ← CONSTRUCT (Q2)

– Each Phase is a WHILE-LOOP , controlled by a queue of boxes

– Most of our algorithms can be put into a similar framework!
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Generic Subdivision Algorithm

What controls Subdivision (Phase I)?

A small number of predicates!

Exclusion Predicate C0(B) ≡ 0 /∈ f (B)
Normal Variation Predicate C1(B) ≡ 0 /∈ fx(B)2 + fy (B)2

Parametrizability Predicate Cxy (B) ≡ 0 /∈ fx(B) or 0 /∈ fy (B)

Pellet Test Tk(B) ≡ |f [k](mB)|rkB >
∑

i 6=k |f [i ](mB)|r iB
Motion Planning predicates “feature-based methods”
Voronoi Diagram predicates “feature-based methods”

...
...

12 / 21



Generic Subdivision Algorithm

Three Levels of Abstractions

Exact Level: C0(B) ≡ 0 /∈ f (B)

Interval Level: C0(B) ≡ 0 /∈ f (B)

Approximate Level: ˜C0(B) ≡ 0 /∈ ˜f (B)

In general: :˜C (B) ⇒ C (B) ⇒ C (B)

Thus we can control numerical precision
and produce rigorously justified implementation.
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What is a “Soft Predicate”?

They are approximations of exact (or “hard”) predicates.

– Suppose the exact box predicate C is

B 7→ C (B) ∈ {−1, 0,+1},

– Call C̃ a soft version of C if

B 7→ C̃ (B) ∈ {−1, 0,+1}

such that

(Conservative) C̃ (B) 6= 0 implies C̃ (B) = C (B)

(Convergent) limi→∞ C̃ (Bi ) = C (limi→∞ Bi ) = C (p)
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III

III. Soft Problems

“Eventually, the topic [...of proving non-zeroness...] takes over the
whole subject [...of Transcendental Number Theory...]”

— David Masser (2000)
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Relaxed Correctness Criteria

What do our “soft tools” achieve?

– Subdivision reduces global correctness criteria

to local correctness criteria

– Our soft tools to achieve some “relaxed” local criteria.

– The relaxed local criteria are synthesized into a

(possibly “relaxed”) global criteria.
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Relaxed Correctness Criteria

3 Examples

(Eg 1) Meshing of Curves/Surfaces:

(Eg 2) Root Isolation:

(Eg 3) Motion Planning:
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Eg 1: Meshing Problem

Meshing curves and surfaces:

GIVEN: a function f (x , y , z)

TO FIND: an approximation S̃ to the surface S = f −1(0)
such that:

A. S̃ ' S (ambient isotopic)

B. dH(S̃ ,S) ≤ ε (geometric accuracy)
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Eg 1: Meshing Problem

Relaxed Local Criteria

– Standard: “Local Isotopy implies Global Isotopy”

(E.g., [Snyder], [Collins-Krandick], etc)

– Soft idea [Plantinga-Vegter]:

(i.e., allow small incursions and excursions)

“do not take boxes too seriously”
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+
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Figure: Marching Cube Construction
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Root Isolation and Clustering

Root Isolation Problem:

GIVEN: f ∈ Z[z ],
TO COMPUTE: a set {∆1, . . . ,∆m}

where ∆i ⊆ C are pairwise disjoint ε-discs,
each containing a unique root.
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Root Isolation and Clustering

Relaxation and Generalization:

Root Clustering Problem:

GIVEN: f ∈ C[z ],
TO COMPUTE: a set {(∆1,m1), . . . , (∆m,mk)}

where ∆i ⊆ C are pairwise disjoint ε-discs,
each #(∆i ) = #(3∆i ) = mk ≥ 1.

– Why this is essential: solving polynomials systems

f1(z1) = 0
f2(z1, z2) = 0
f3(z1, z2, z3) = 0
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Root Isolation and Clustering

The set Zero(∆) is called a natural cluster if
#(∆) = #(3∆)

3∆

∆

Figure: Red cluster is unnatural, Blue cluster is natural

– Natural clusters are disjoint or has inclusion relation

– They form a cluster tree of size < 2n.
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Motion Planning

Demo of Rod and Ring in 3D

(see other Demos in Gallery)
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Motion Planning

Demo of Rod and Ring in 3D

(see other Demos in Gallery)

Motion Planning Problem (for a robot R0):

GIVEN: (Ω, α, β),
TO FIND: either

an Ω-avoiding path from α to β,
or return NO-PATH.

Search in configuration space Cspace(R0,Ω)
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Motion Planning

Some rigid complex robots in 2D
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Motion Planning

Relaxed Correctness Criteria

A path planner is ε-exact
if there is a K > 1 such that

(1) it returns a path if the maximum

clearance of paths from α to β is > Kε,
(2) if returns NO-PATH if the maximum

clearance is < K/ε,

Indeterminacy if maximum clearance is in [K/ε,Kε].
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IV

IV. Conclusion
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Conclusion

WHAT HAVE WE DONE?

– given up exact model (Real RAM Model)

– developed an effective numerical model

– main algorithmic paradigm: subdivision/iteration
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Conclusion

WHAT HAVE WE DONE?

WHAT HAVE WE ACHIEVED?

– state-of-art in motion planning

First exact and complete 5DOF

realtime implementation

– state-of-art results in root isolation

First near-optimal root isolation algorithm

implementation (cf. [Schönhage-Pan (1981-1992)])
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Conclusion

WHAT HAVE WE DONE?

WHAT HAVE WE ACHIEVED?

BROAD CONSEQUENCES?

– scope of computational geometry vastly broadened

– non-linear geometry becomes accessible

– implementable algorithms that are also practical
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Conclusion

WHAT HAVE WE DONE?

WHAT HAVE WE ACHIEVED?

BROAD CONSEQUENCES

FUTURE WORK

– develop new algorithms for old CG problems

– produce complexity analysis of such algorithms

– theory of real computation and continuous complexity
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Thanks for Listening!

“Algebra is generous,
she often gives more than is asked of her.”

— Jean Le Rond D’Alembert (1717-83)

“To Generalize is to be an Idiot. To Particularize is the Alone
Distinction of Merit – General Knowledges are those Knowledges

that Idiots possess.”

— William Blake (1757 – 1827)

Annotations to Sir Joshua Reynolds’s Discourses, pp. xvii – xcviii
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