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Overview

• 1 dimension
• 2 dimensions
• 3 dimensions
• 4 dimensions
• d dimensions

O(n log n) time

O(ndd/3e log n) time [Brass and Knauer 2002]
today (joint work with Heuna Kim)

O(nb(d+2)/2c/2 log n) Monte Carlo [Akutsu 1998/Matoušek]

↓ O(nb(d+1)/2c/2 log n) time
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Overview

• 1 dimension
• 2 dimensions
• 3 dimensions
• 4 dimensions
• d dimensions

O(n log n) time

O(ndd/3e log n) time [Brass and Knauer 2002]

• Rotations in 4-space
• Plücker coordinates for 2-planes in 4-space
• The Hopf fibration of S3
• Closest pair graph
• 2+2 dimension reduction
• Coxeter classification of reflection groups

today (joint work with Heuna Kim)

O(nb(d+2)/2c/2 log n) Monte Carlo [Akutsu 1998/Matoušek]

↓ O(nb(d+1)/2c/2 log n) time
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Initialization: Closest-Pair Graph

2) Compute the closest pair graph

G(A) = (A, {uv : ‖u− v‖ = δ })

where δ := the distance of the closest pair, in O(n log n) time.

1) PRUNE by distance from the origin.

• =⇒ we can assume that A lies on the 3-sphere S3.

• We can assume that δ is SMALL: δ ≤ δ0 := 0.0005.
(Otherwise, |A| ≤ n0, by a packing argument.)

[ Bentley and Shamos, STOC 1976 ]
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Everything looks the same!

By the PRUNING principle, we can assume that all points look
locally the same:

• All points have congruent neighborhoods in G(A).
(The neighbors of u lie on a 2-sphere in S3;
There are at most K3 = 12 neighbors.)

u

δ

1

2

3

4

6
5

7 8
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(The neighbors of u lie on a 2-sphere in S3;
There are at most K3 = 12 neighbors.)
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u v

• Make a directed graph D from G(A)
and PRUNE its arcs uv by
the joint neighborhood of u and v.
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Everything looks the same!

By the PRUNING principle, we can assume that all points look
locally the same:

• All points have congruent neighborhoods in G(A).
(The neighbors of u lie on a 2-sphere in S3;
There are at most K3 = 12 neighbors.)

u

δ

1

2

3

4

6
5

7 8

u v• . . . until all arcs uv
look the same.

• Make a directed graph D from G(A)
and PRUNE its arcs uv by
the joint neighborhood of u and v.
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Predecessor-Successor Figure

α
u

v

t

w
s(uv)

p(uv)

Pick some α. s(uv) := {vw : vw ∈ E,∠uvw = α}
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from s(u, v)

canonical directions
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Predecessor-Successor Figure

α
u

v

t

w

t′

w′

s(uv)

p(uv)

Pick some α. s(uv) := {vw : vw ∈ E,∠uvw = α}

τ

w′

t′

torsion angle τ can PRUNE arcs
from s(u, v)

τ0

For every path tuv
with ∠tuv = α,
∃ vw with ∠uvw = α
and torsion angle τ0.

canonical directions
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Orbit cycles

p1
p0 p2

For every path pipi+1pi+2 with ∠pipi+1pi+2 = α,
∃ pi+3 with ∠pi+1pi+2pi+3 = α and torsion τ0.!
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Orbit cycles

p1
p0 p2

p3

For every path pipi+1pi+2 with ∠pipi+1pi+2 = α,
∃ pi+3 with ∠pi+1pi+2pi+3 = α and torsion τ0.!



Günter Rote, Freie Universität Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17–21, 2018

Orbit cycles

p1
p0 p2

p3

For every path pipi+1pi+2 with ∠pipi+1pi+2 = α,
∃ pi+3 with ∠pi+1pi+2pi+3 = α and torsion τ0.

R(p0, p1, p2) = (p1, p2, p3)

R

!
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Orbit cycles

p1
p0 p2

p3

For every path pipi+1pi+2 with ∠pipi+1pi+2 = α,
∃ pi+3 with ∠pi+1pi+2pi+3 = α and torsion τ0.

p4

R(p0, p1, p2) = (p1, p2, p3)

R(p0, p1, p2, p3) = (p1, p2, p3, p4)

R

!
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Orbit cycles

p1
p0 p2

p3

For every path pipi+1pi+2 with ∠pipi+1pi+2 = α,
∃ pi+3 with ∠pi+1pi+2pi+3 = α and torsion τ0.

p4

R(p0, p1, p2) = (p1, p2, p3)

R(p0, p1, p2, p3) = (p1, p2, p3, p4)

R(p1, p2, p3, p4) = (p2, p3, p4, p5)
· · ·
Rpi = pi+1: The orbit of p0 under R, a helix

R

!
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Rotations in 4 dimensions

R =


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0
0 0 cosψ − sinψ
0 0 sinψ cosψ

 =

(
Rϕ 0
0 Rψ

)

in some appropriate coordinate system.

ϕ 6= ±ψ: → unique decomposition R4 = P ⊕Q into two
completely orthogonal 2-dimensional axis planes P and Q

ϕ = ±ψ: isoclinic rotations

circle with radius r

The orbit of a point p0 = (x1, y1, x2, y2) lies on a helix
on a flat torus Cr × Cs, with r =

√
x21 + y21 , s =

√
x22 + y22
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Rotations in 4 dimensions

R =


cosϕ − sinϕ 0 0
sinϕ cosϕ 0 0
0 0 cosψ − sinψ
0 0 sinψ cosψ

 =

(
Rϕ 0
0 Rψ

)

The orbit of a point p0 = (x1, y1, x2, y2) lies on a helix
on a flat torus Cr × Cs, with r =

√
x21 + y21 , s =

√
x22 + y22

s

p0

p1

p2

p5

p6

p7

ϕ

ψ

Cr
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Planes in 4 dimensions

• Every point lies on ≤ 60 orbit cycles.

• Every orbit cycle contains ≥ 12000 points,
because δ is small.

• Every orbit cycle generates 1 plane
(corresponding to the smaller of ϕ and ψ.)

=⇒ a collection of ≤ n/200 planes (or: great circles)
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Marking Points on Great Circles

projection of another unit circle Q

unit circle P



Günter Rote, Freie Universität Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17–21, 2018

Marking Points on Great Circles

projection of another unit circle Q

unit circle P

IDEA: mark those two points in P
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Marking Points on Great Circles

projection of another unit circle Q

unit circle P

IDEA: mark those two points in P

a neighbor of P

IDEA 2: Construct the closest-pair
graph in the space of great circles,
in O(n log n) time.
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Plücker coordinates

planes in 4-space ⇔ great circles on S3 ⇔ a.k.a. lines in RP 3

plane through (x1, y1, x2, y2) and (x′1, y
′
1, x
′
2, y
′
2) :

(v1, . . . , v6) =
(∣∣∣x1 y1x′1 y

′
1

∣∣∣, ∣∣∣x1 x2x′1 x
′
2

∣∣∣, ∣∣∣x1 y2x′1 y
′
2

∣∣∣, ∣∣∣y1 x2y′1 x
′
2

∣∣∣, ∣∣∣y1 y2y′1 y
′
2

∣∣∣, ∣∣∣x2 y2x′2 y
′
2

∣∣∣)
(v1, . . . , v6) ∈ RP 5. [Plücker relations v1v6 − v2v5 + v3v4 = 0]

Normalize:
→ A great circle is represented by two antipodal points on S5.

This representation is geometrically meaningful:
Distances on S5 are preserved under rotations of R4 / S3.

(Packings of 2-planes in 4-space were considered by
[Conway, Hardin and Sloane 1996], with different distances.)



Günter Rote, Freie Universität Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17–21, 2018

Marking Points on Great Circles

projection of another unit circle Q

unit circle P

IDEA: mark those two points in P

a neighbor of P

IDEA 2: Construct the closest-pair
graph in the space of great circles,
in O(n log n) time.
Every plane has at most K5 ≤ 44
neighbors.
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Marking Points on Great Circles

m ≤ n
200 great circles in R4 −→ m point pairs on S5

projection of another unit circle Q

unit circle P

IDEA: mark those two points in P

At most 88 (≤ 100) points are marked on every great circle.

These points replace A. → successful CONDENSATION

a neighbor of P

IDEA 2: Construct the closest-pair
graph in the space of great circles,
in O(n log n) time.
Every plane has at most K5 ≤ 44
neighbors.
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Isoclinic planes

Where to mark??

projection of a neighbor Q of P

unit circle P
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Isoclinic planes

Where to mark??

projection of a neighbor Q of P

Problem if all closest pairs are
isoclinic.

unit circle P
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Isoclinic planes

Where to mark??

projection of a neighbor Q of P

Problem if all closest pairs are
isoclinic.

unit circle P

Constant distances from one circle to the other.
“Clifford-parallel” ≡ isoclinic
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Clifford-parallel circles

s

P :


x1
y1
x2
y2

=


cos t
sin t
0
0

, Q :


r cos t
r sin t

s cos(α+ t)
s sin(α+ t)



P

Q

r2 + s2 = 1
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Clifford-parallel circles

s

P :


x1
y1
x2
y2

=


cos t
sin t
0
0

, Q :


r cos t
r sin t

s cos(α+ t)
s sin(α+ t)



P

Q

r2 + s2 = 1

h(x1, y1, x2, y2) = the right Hopf map h : S3 → S2(
2(x1y2 − y1x2), 2(x1x2 + y1y2), 1− 2(x22 + y22)

)
[ Hopf 1931 ]



Günter Rote, Freie Universität Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17–21, 2018

Clifford-parallel circles

s

P :


x1
y1
x2
y2

=


cos t
sin t
0
0

, Q :


r cos t
r sin t

s cos(α+ t)
s sin(α+ t)



P

Q

Q′ :


r cos t
r sin t

s cos(α− t)
s sin(α− t)



Q′

r2 + s2 = 1

h(x1, y1, x2, y2) = the right Hopf map h : S3 → S2(
2(x1y2 − y1x2), 2(x1x2 + y1y2), 1− 2(x22 + y22)

)
[ Hopf 1931 ]
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The Hopf fibration

The fibers h−1(p) for p ∈ S2 are great circles: a Hopf bundle

http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html

Every great circle belongs to a unique right Hopf bundle.

Right Hopf map h : S3 → S2

Isoclinic ≡ belong to the same Hopf bundle
This is a transitive relation.

stereographic projection S3 → R3

(Villarceau circles)
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The Hopf fibration

The fibers h−1(p) for p ∈ S2 are great circles: a Hopf bundle

http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html

Every great circle belongs to a unique right Hopf bundle.

Right Hopf map h : S3 → S2

Isoclinic ≡ belong to the same Hopf bundle
This is a transitive relation.

If all closest pairs are isoclinic
→ all great circles in a connected
component of the closest-pair graph
belong to the same bundle.
→ h maps them to points on S2.

We know how to deal with S2!
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Condensing on the 2-Sphere

Equivariant condensation on the 2-sphere:

Input: A ⊆ S2.
Output: A′ ⊆ S2, |A′| ≤ min{|A|, 12}.
• A′ = vertices of a regular icosahedron
• A′ = vertices of a regular octahedron
• A′ = vertices of a regular tetrahedron
• A′ = two antipodal points, or
• A′ = a single point.
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Condensing on the 2-Sphere

Equivariant condensation on the 2-sphere:

Input: A ⊆ S2.
Output: A′ ⊆ S2, |A′| ≤ min{|A|, 12}.
• A′ = vertices of a regular icosahedron
• A′ = vertices of a regular octahedron
• A′ = vertices of a regular tetrahedron
• A′ = two antipodal points, or
• A′ = a single point.

Condense each connected component of the closest-pair graph
to ≤ 12 great circles.
Compute closest-pair graph (on S5) from scratch.
If no progress, distance between closest pairs is ≥ Dicosa

→ ≤ 829 great circles → 2+2 DIMENSION REDUCTION
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2+2 Dimension Reduction

We have a plane P and we know its image in B.

x1

y1

x2

y2

(x1, y1, x2, y2)
r2

ϕ2

ϕ1
r1

(0, 0, 0, 0)

P

P⊥

“Double-polar” coordinates (r1, ϕ1, r2, ϕ2)

We can change ϕ1 and ϕ2.
r1 and r2 are fixed.
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2+2 Dimension Reduction

attach (r1, r2) as a label (color)

ϕ2

ϕ1
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2+2 Dimension Reduction

attach (r1, r2) as a label (color)

ϕ2

ϕ1
the picture for set B

Are they the same up to translation on the ϕ1, ϕ2-torus?
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2+2 Dimension Reduction

ϕ2

ϕ1

Prune without losing information:
(CANONICAL SET)
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2+2 Dimension Reduction

ϕ2

ϕ1

Prune without losing information:
(CANONICAL SET)

Pick a color class
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2+2 Dimension Reduction

Prune without losing information:
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Pick a color class
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2+2 Dimension Reduction

Prune without losing information:
(CANONICAL SET)

Pick a color class

Compute the Voronoi diagram
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2+2 Dimension Reduction

Prune without losing information:
(CANONICAL SET)

Pick a color class

Compute the Voronoi diagram

Assign other points to cells.

Refine the coloring, based on
color and relative position of
assigned points, shape of
Voronoi cell.

Repeat.

After recoloring, the reduced set has THE SAME translational
symmetries as the old set.
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2+2 Dimension Reduction

Termination:
All points have the same color
and the same cell shape
(a modular lattice)

ANY point is as good a
representative as any other.

CANONICAL SET c(A):
move (any) representative point
to (ϕ1, ϕ2) = (0, 0), or to
(x1, 0, x3, 0).

∃T with TP = P and TA = B ⇐⇒ c(A) = c(B)
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Algorithm Overview

Iterative

Pruning Generating

Orbit Cycles

Mirror

Case

planes

mirror
symmetry

n = |A| is bounded

2+2 Dimension

Reduction

1+3 Dimension

Reduction

edge-
transitive

≤ 100|P| markers

lower-dimensional
components

Marking and

Condensing

Great Circles
|P| ≤ n/200

≤ n
2

≤ n
2
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The Mirror Case

α
u

v

t

w

t′

w′

s(uv)

p(uv)

Pick some α. s(uv) := {vw : vw ∈ E,∠uvw = α}

τ

w′

t′

torsion angle τ
can PRUNE arcs

from s(u, v)

τ0
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The Mirror Case

Every edge acts like a perfect mirror of the neighborhood.

→ Every connnected component is the orbit of a point under
a group generated by reflections.

These groups have been classified. (Coxeter groups)

• “small” components
→ condensing

• Cartesian product of 2-dimensional groups (infinite family)
→ 2+2 dimension reduction

• “large” components (finite family)
→ |A| ≤ n0
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Afterthoughts

• 5 dimensions and higher
• terrible constants
• chimeras
• tolerances, ≤ ε versus ≥ 10ε
• depth of construction (→ degree of predicates)
• Plücker space
• point groups in 4 dimensions
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Symmetry groups

COROLLARY. The symmetry group of a finite full-dimensional
point set in 3-space (= a discrete subgroup of O(3)) is

• the symmetry group of a Platonic solid,

• the symmetry group of a regular prism,

• or a subgroup of such a group.

The point groups (discrete subgroups of O(3)) are classified
(Hessel’s Theorem).

[ F. Hessel 1830, M. L. Frankenheim 1826 ]
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Point groups in higher dimensions

¿The symmetry group of a finite full-dimensional point set in
d-space (= a discrete subgroup of O(d)) is

• the symmetry group of a regular d-dimensional polytope:
– a regular simplex
– ∗ a hypercube (or its dual, the crosspolytope)
– a regular n-gon in two dimensions
– a dodecahedron (or its dual, the icosahedron) in 3 d.
– a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

• the symmetry group of the Cartesian product of
lower-dimensional regular polytopes,

• or a subgroup of such a group? ?

Bold and naive CONJECTURE:
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Point groups in higher dimensions

¿The symmetry group of a finite full-dimensional point set in
d-space (= a discrete subgroup of O(d)) is

• the symmetry group of a regular d-dimensional polytope:
– a regular simplex
– ∗ a hypercube (or its dual, the crosspolytope)
– a regular n-gon in two dimensions
– a dodecahedron (or its dual, the icosahedron) in 3 d.
– a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

• the symmetry group of the Cartesian product of
lower-dimensional regular polytopes,

• or a subgroup of such a group? ?

Bold and naive CONJECTURE:

Counterexample (Paco Santos, by divisibility). The symmetry
groups of the root systems E6, E7, E8 in 6, 7, 8 dimensions.
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The four-dimensional point groups

• [ W. Threlfall and H. Seifert, Math. Annalen, 1931, 1933 ]

enumerated discrete subgroups of SO(4) (determinant +1)

• [ J. Conway and D. Smith 2003 ]

complete enumeration of point groups

4d-rotation T ↔ pair (R,S) of 3d-rotations.
(for example, via quaternions)

• The groups generated by reflections (Coxeter groups) have
been enumerated up to 8 dimensions.

[ Norman Johnson, unpublished book manuscript ]

Goursat’s Lemma: [ É. Goursat 1890 ]

Pairs of 3d point groups
+ additional information
→ 4d point groups
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The four-dimensional point groups

Table 4.1. The chiral groups
(groups of
orientation-preserving
orthogonal transformations)

both m and n must be odd.

[ Conway and Smith 2003 ]
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The four-dimensional point groups

Table 4.2.
The chiral groups
(continued)
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The four-dimensional point groups

Table 4.3.
The achiral groups
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The four-dimensional point groups

Table 4.3.
The achiral groups

• Project: Visualize
these groups:
Schlegel diagram of a
4-polytope which has
these symmetries.
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Point groups in four dimensions
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4-space (= a discrete subgroup of O(4)) is

• the symmetry group of a regular d-dimensional polytope:
– a regular simplex
– a regular n-gon in two dimensions
– a dodecahedron (or its dual, the icosahedron) in 3 d.
– a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

• the symmetry group of the Cartesian product of
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Point groups in four dimensions

¿The symmetry group of a finite full-dimensional point set in
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– a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

• the symmetry group of the Cartesian product of
lower-dimensional regular polytopes,

• or a subgroup of such a group? ?

Bold and naive CONJECTURE:

Counterexample: I × Cn (group-theoretic product,
but not geometric Cartesian product)
Icosahedron on S2 ⇒ 12 great circles with regular n-gons in S3
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Point groups in four dimensions

Counterexample: I × Cn (group-theoretic product,
but not geometric Cartesian product)
Icosahedron on S2 ⇒ 12 great circles with regular n-gons in S3

http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html
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