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1 dimension
2 dimensions
3 dimensions
4 dimensions J<— today (joint work with Heuna Kim)

d dimensions O(n!%/311ogn) time [Brass and Knauer 2002]

O(nlld+2)/2]/210gn) Monte Carlo [Akutsu 1998/Matoudek]
L O(nlld+1)/2]/210g ) time

O(nlogn) time
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1 dimension
2 dimensions
3 dimensions
4 dimensions J<— today (joint work with Heuna Kim)

d dimensions O(n!%/311ogn) time [Brass and Knauer 2002]

O(nlld+2)/2]/210gn) Monte Carlo [Akutsu 1998/Matoudek]
L O(ntld+1)/2]/210g 1) time

O(nlogn) time

Rotations in 4-space

Plucker coordinates for 2-planes in 4-space
The Hopf fibration of S°

Closest pair graph

242 dimension reduction

Coxeter classification of reflection groups

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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joint work with Heuna Kim
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<2 _mirror | Mirror Marking and
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Pruning edge—. ) Generating [ e
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2-+2 Dimension
Reduction

n = |A] is bounded q 143 Dimension
Reduction
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joint work with Heuna Kim

lower-dimensional

components
<z mirror
symmetry
vy Vv
lterative

pruging Jhedee

Mirror

< 100|P| markers

Marking and

Case

Condensing
Great Circles

>
IP| < n/200

Generating
Orbit Cycles

I lplanes

n = | Al is bounded

2-+2 Dimension
Reduction

143 Dimension

Glnter Rote, Freie Universitat Berlin
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Reduction

rinity College, Dublin, Jun

Workshop on Geometric Computation and Applicatio



Initialization: Closest-Pair Graph ree Uriversic o 1

1) PRUNE by distance from the origin.
e — we can assume that A lies on the 3-sphere S°.

2) Compute the closest pair graph
G(A) = (A {uw:lu—vl|=0d})

where 0 := the distance of the closest pair, in O(nlogn) time.
[ Bentley and Shamos, STOC 1976 |

e We can assume that 0 is SMALL: 6 < ¢g := 0.0005.
(Otherwise, |A| < ng, by a packing argument.)

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Everything looks the same! Freie Universicie [ ¢
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2

By the PRUNING principle, we can assume that all points look
locally the same:

e All points have congruent neighborhoods in G(A).
(The neighbors of u lie on a 2-sphere in S°;
There are at most K3 = 12 neighbors.)

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Everything looks the samel Freie Universtat

{ERSTTE

By the PRUNING principle, we can assume that all points look
locally the same:

e All points have congruent neighborhoods in G(A).
(The neighbors of u lie on a 2-sphere in S7;
There are at most K3 = 12 neighbors.)

e Make a directed graph D from G(A)
and PRUNE its arcs uv by
the joint neighborhood of u and wv.

Glnter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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By the PRUNING principle, we can assume that all points look
locally the same:

e All points have congruent neighborhoods in G(A).
(The neighbors of u lie on a 2-sphere in S7;
There are at most K3 = 12 neighbors.)

e Make a directed graph D from G(A)
and PRUNE its arcs uv by
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By the PRUNING principle, we can assume that all points look
locally the same:

e All points have congruent neighborhoods in G(A).
(The neighbors of u lie on a 2-sphere in S°;
There are at most K3 = 12 neighbors.)

e Make a directed graph D from G(A)
and PRUNE its arcs uv by
the joint neighborhood of u and v.

e ... until all arcs wv U v
look the same.

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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Predecessor-Successor Figure Freie Universicse o et

Pick some «.

s(uv) == {vw 1 vw € E, Zuvw = a}

Glnter Rote, Freie Universitat Berlin
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Predecessor-Successor Figure Freie Universit

Pick some «.

Glnter Rote, Freie Universitat Berlin

s(uv) == {vw 1 vw € E, Zuvw = a}

The Computational Geometry of Congruence Testing

wl

torsion angle 7

Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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Pick some a.  s(uv) :={vw : vw € E, Zuvw = a}

wl

torsion angle 7
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Predecessor-Successor Figure Feie Unhversitst Sl

Pick some a.  s(uv) :={vw : vw € E, Zuvw = a}

W' canonical directions

torsion angle 7 PRUNE arcs

from s(u,v)
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Predecessor-Successor Figure Freie Universitit |

Pick some a.  s(uv) :={vw : vw € E, Zuvw = a}

W' canonical directions

e @

torsion angle 7 PRUNE arcs
from s(u,v)

For every path tuwv
with Jtuv = «a,

3 vw with Zuvw = «o
and torsion angle 7.

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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| For every path p;p;1piyr2 with Zp;p;11piv2 = «,
- Pi+3 with 4pi+1pi—|—2pi—|—3 — « and torsion 70 -

P1

p'O/‘NiQ
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| For every path p;p;1pi12 with Zp;p;11piy2 = a,
= Pi+3 with épi—l—lpi—l—QpH—S — « and torsion 70 -

P1

Do Do P3
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| For every path p;p;1piyr2 with Zp;p;11piv2 = «,
= Pi+3 with 4pi+1pi—|—2pi—|—3 — « and torsion 70 -

R
p
p 3

R(po, p1,p2) = (p1,p2,D3)

Glnter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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| For every path p;p;1piyr2 with Zp;p;11piv2 = «,
= Pi+3 with Zp,,;_|_1p7;_|_2pi_|_3 — « and torsion 70 -

R P4
p
p 3

R(po, p1,p2) = (p1,p2,D3)
R(po, p1,p2,03) = (p1,P2,P3,P4)

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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| For every path p;p;1piyr2 with Zp;p;11piv2 = «,
- Pi+3 with Zp,,;_|_1p7;_|_2pi_|_3 = « and torsion 70 -

R(po, p1,p2) = (p1,p2,D3)
R(po, p1,p2,03) = (p1,P2,P3,P4)
R(plap27p37p4) — (p2ap37p47p5)

Rp; = p;+1: The orbit of pg under R, a helix

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Rotations in 4 dimensions

/Cosgp — sin 0 0 \
n_ Sinw  cos 0 0 _ (Rg; O>
0 0 cos®y —siny 0 Ry

\ 0 0 sin Coszp/

In some appropriate coordinate system.

¢ # 41): — unique decomposition R* = P & Q into two

comp

etely orthogonal 2-dimensional axis planes P and ()

@ = =£1): 1soclinic rotations

The orbit of a point pg = (z1,y1,T2,y2) lies on a helix
on a flat torus C, x Cy, with r = /22 + 92, s = /23 + y2

Glnter Rote, Freie

f

circle with radius r

Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Rotations in 4 dimensions

/Cosgp — sin 0 0
n_ Sinw  cos 0 0 _ R, O
0 0 cos®y —siny 0 Ry
\ 0 0 sin Coszp/

The orbit of a point pg = (z1,y1,T2,y2) lies on a helix
on a flat torus C, x Cy, with r = /22 + 92, s = /22 + y2

P2 P

P6

¥, P5

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Planes in 4 dimensions Freie Universit (o

e Every point lies on < 60 orbit cycles.

e Every orbit cycle contains > 12000 points,
because 0 is small.

e Every orbit cycle generates 1 plane
(corresponding to the smaller of ¢ and 1).)

— a collection of < n/200 planes (or: great circles)

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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< 100|P| markers

lower-dimensional

components
<2z _mirror — g"”or Marking and
symmetr .
v V g Y a5¢ Condensing
lterative - Great Circles
Pru T \edge- Generating

Orbit Cycles

NS
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Reduction
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Marking Points on Great Circles e Universiae o

— projection of another unit circle ()

.

-
" rppmm=™

unit circle P

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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Marking Points on Great Circles ree Uriversic o 1 ert

— projection of another unit circle ()

< IDEA: mark those two points in P

unit circle P

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



M d rkl ng POl NtS on G reat Cl rC|eS Freie Universitét \ Berhn

unit circle P

— projection of M @,

a neighbor of P
_— IDEA: mark those two points in P
IDEA 2: Construct the closest-pair

graph in the space of great circles,
in O(nlogn) time.

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence

Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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planes in 4-space < great circles on S° < a.k.a. lines in RP?

)

(v1,...,v6) € RP?. [Pliicker relations vivg — vov5 + v3v4 = 0]

plane through (xlaylax%yQ) and (x/lay/laaj/%yé) :
(X1 Y1) |1 L2 X1 Y2| |Y1X2| |Y1Y2
(W1 -06) = ([t i | Lot bl o4 vl 1of 2 1o o

) )

T2 Y2
N AN
Lo Yo

Normalize:
— A great circle is represented by two antipodal points on S°.

This representation is geometrically meaningful:
Distances on S° are preserved under rotations of R* / S°.

(Packings of 2-planes in 4-space were considered by
[Conway, Hardin and Sloane 1996], with different distances.)

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



M d rkl ng POl NtS on G reat Cl rC|eS Freie Universitét \ Berhn

— projection of M Q

a neighbor of P
< IDEA: mark those two points in P

IDEA 2: Construct the closest-pair
graph in the space of great circles,
in O(nlogn) time.

Every plane has at most K5 < 44

neighbors.
unit circle P

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



M d rkl ng POI ntS on G reat Cl rCIeS Freie Umvers1tat \

) Berhn
— projection of M Q

a neighbor of P
< IDEA: mark those two points in P

IDEA 2: Construct the closest-pair
graph in the space of great circles,
in O(nlogn) time.

Every plane has at most K5 < 44

neighbors.

unit circle P

m < 5= great circles in R*  —  m point pairs on S”

At most 88 (< 100) points are marked on every great circle.
These points replace A. — successful CONDENSATION

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
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Isoclinic planes

Freie Universitit | ¥ Berlin

— projection of a neighbor () of P

— Where to mark??

- -
"mamm="

unit circle P

Glnter Rote, Freie Universitat Berlin

The Computational Geometry of Congruence Testing

Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Isoclinic planes

Freie Universitat | ¥ Berlin
\

-------
-” “a

- -
"mamm="

-
-
--------

unit circle P

— projection of a neighbor () of P

— Where to mark??

Problem if all closest pairs are
Isoclinic.

Glnter Rote, Freie Universitat Berlin

The Computational Geometry of Congruence Testing

Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Isoclinic planes

AOSTITIA N
VS

Freie Universitat @5 Berlin

— projection of a neighbor () of P

-
......
Py N

— Where to mark??

g,
~ -
"mamm="

—"
-------

Problem if all closest pairs are
Isoclinic.

unit circle P

Constant distances from one circle to the other.
“Clifford-parallel” = isoclinic

Glnter Rote, Freie Universitat Berlin

The Computational Geometry of Congruence Testing

Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



C I Iﬂ:O I’d— pa Fa | Iel Cl 'C | es Freie Universitat \ Berlin

sint rsint

b zo || O - Q: scos(a +t)
\yQ/ \ 0 / \ssin(aﬂ—t))

ré 4 5% =1

/51\ /Cost\ / r COS T \

~———

~ -
~ -
-~
- -
- -
-
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Clifford-parallel circles eie Universitat A 1
\@@\:ﬁl‘//

/xl\ /Cost\ / rcpst \

lyr | | sint . rsint
b o | O | Q: scos(a + t)
)

\yQ/ \ 0 / \SSiH(OﬂT“t}

2—|—S

e p
~—
— :

h(z1,y1, T2, y2) = the right Hopf map h: S — S?

(2($1y2 —y172), 2(x172 +y192), 1 —2(x5 + y%))
[ Hopf 1931 ]
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Clifford-parallel circles

/51\ /Cost\ / r COS T \

. | sint . rsin ;.
b N Q@ scos(a + t) @ scos(a — t)
)

\yQ/ \ 0 / \ssin(oz T—t) \ssin(oz—t)/

h(z1,y1, T2, y2) = the right Hopf map h: S — S?

(2($1y2 —y172), 2(x172 +y192), 1 —2(x5 + y%))
[ Hopf 1931 ]
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Right Hopf map h: S° — S?

The fibers h=1(p) for p € S? are great circles: a Hopf bundle
Every great circle belongs to a unique right Hopf bundle.

Isoclinic = belong to the same Hopf bundle
This is a transitive relation.

stereographic projection S? — R?

(Villarceau circles)

http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



he Hopf fibration ree Unversit | o |
Right Hopf map h: S° — S?

The fibers h=1(p) for p € S? are great circles: a Hopf bundle
Every great circle belongs to a unique right Hopf bundle.

Isoclinic = belong to the same Hopf bundle
This is a transitive relation.

If all closest pairs are isoclinic

— all great circles in a connected
component of the closest-pair graph
belong to the same bundle.

— h maps them to points on S?.

We know how to deal with S?!

http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Condensing on the 2-Sphere ree Unversit | o |

Equivariant condensation on the 2-sphere:

Input: A C S?.

Output: A’ C S?, |A'| < min{|A|, 12}.
A’ = vertices of a regular icosahedron
A’ = vertices of a regular octahedron
A’ = vertices of a regular tetrahedron
A’ = two antipodal points, or

A’ = a single point.

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Berlin

LS
Condensing on the 2-Sphere )
‘%m*‘

Equivariant condensation on the 2-sphere:

Input: A C S?.

Output: A’ C S?, |A'| < min{|A|, 12}.
A’ = vertices of a regular icosahedron
A’ = vertices of a regular octahedron
A’ = vertices of a regular tetrahedron
A’ = two antipodal points, or

A’ = a single point.

Condense each connected component of the closest-pair graph
to < 12 great circles.
Compute closest-pair graph (on S°) from scratch.

If no progress, distance between closest pairs is > Djcosa
— < 829 great circles — 242 DIMENSION REDUCTION

Giinter Rote, Freie Universitat Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018



Algorithm Overview

Freie Universitat Y Berlin

< 100|P| markers

lower-dimensional

components
< % mirror t > E/hrror
symmetry ase
vy v
lterative 1P| < n/200

Pruning
F=: |

NS

Glnter Rote, Freie Universitat Berlin

edge- Generating [
transitive | Qrbit Cycles

n = |A| is bounded

Marking and
Condensing
Great Circles

planes

2-+2 Dimension
Reduction

>

The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018

143 Dimension
Reduction




Algorithm Overview

Freie Universitat (1S

< 100|P| markers

lower-dimensional

components
< % mirror t > E/hrror
symmetry ase
vy v
lterative 1P| < n/200

Pruning
F=: |

NS

Glnter Rote, Freie Universitat Berlin

edge- Generating [
transitive | Qrbit Cycles

n = |A| is bounded

Marking and
Condensing
Great Circles

planes

2-+2 Dimension
Reduction

>

The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018

143 Dimension
Reduction




&
&

2+2 Dimension Reduction Freie Univrsicst ol 1

We have a plane P and we know its image in B.
“Double-polar” coordinates (r1, 1,72, ©2)

Yo | We can changg w1 and .
' r1 and ro are fixed.

.............. ‘ (:’Cljylszij)

P
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o — attach (r1,72) as a label (color)
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¢ Berlin

o — attach (r1,72) as a label (color)

A ./.
P2 | . .

51 > the picture for set B

Are they the same up to translation on the 4, wo-torus?
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A . (CANONICAL SET)

P2l |

P1
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Prune without losing informafion:
A . (CANONICAL SET)

Pick a color class

P2l |

P1
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Prune without losing informa/tion:
(CANONICAL SET)

Pick a color class
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Prune without losing information:
7 (CANONICAL SET)

Pick a color class

Compute the Voronoi diagram
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2+2 Dimension Reduction Free Universtst (o

rune without losing information:

. /./ (CANONICAL SET)
// Pick a color class

\ Compute the Voronoi diagram
\ Assign other points to cells.
Refine the coloring, based on
color and relative position of
assigned points, shape of
Voronol cell.

Repeat.

After recoloring, the reduced set has THE SAME translational
symmetries as the old set.
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Termination:

All points have the same color
and the same cell shape

(a modular lattice)

ANY point is as good a
representative as any other.

CANONICAL SET ¢(A):
move (any) representative point

to (¢1,92) = (0,0), or to
($1,0,$3,0).

3T with TP = P and TA = B <= ¢(A) = ¢(B)
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< 100|P| markers

lower-dimensional

components
< % mirror t > E/hrror
symmetry ase
vy v
lterative 1P| < n/200

Pruning
F=: |

NS
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edge- Generating [
transitive | Qrbit Cycles

n = |A| is bounded

Marking and
Condensing
Great Circles

planes
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Reduction
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Pick some a.  s(uv) :={vw : vw € E, Zuvw = a}

wl

t/
can PRUNE arcs
from s(u,v)
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Every edge acts like a perfect mirror of the neighborhood.

— Every connnected component is the orbit of a point under
a group generated by reflections.

These groups have been classified. (Coxeter groups)

e ‘small’ components
— condensing

e Cartesian product of 2-dimensional groups (infinite family)
— 242 dimension reduction

e ‘“large” components (finite family)
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Afte rthoughts Freie Universitat : ;

5 dimensions and higher

terrible constants

chimeras

tolerances, < ¢ versus > 10¢

depth of construction (— degree of predicates)
Plucker space

point groups in 4 dimensions
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COROLLARY. The symmetry group of a finite fuII—dimen;RibnaI

point set in 3-space (= a discrete subgroup of O(3)) is
e the symmetry group of a Platonic solid,
e the symmetry group of a regular prism,

e or a subgroup of such a group.

The point groups (discrete subgroups of O(3)) are classified

(Hessel's Theorem). £ el 1830, M. L. Frankenheim 1826 |
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Point groups in higher dimensions ree Uriversic o 1

Bold and naive CONJECTURE:

i The symmetry group of a finite full-dimensional point set in
d-space (= a discrete subgroup of O(d)) is

e the symmetry group of a regular d-dimensional polytope:
— a regular simplex
— * a hypercube (or its dual, the crosspolytope)
— a regular n-gon in two dimensions
— a dodecahedron (or its dual, the icosahedron) in 3 d.
— a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

e the symmetry group of the Cartesian product of
lower-dimensional regular polytopes,
e or a subgroup of such a group? ?
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Point groups in higher dimensions

Bold and naive CONJECTURE:
i The symmetry group of a finite full-dimensional point set in
d-space (= a discrete subgroup of O(d)) is
e the symmetry group of a regular d-dimensional polytope:
— a regular simplex
— * a hypercube (or its dual, the crosspolytope)
— a regular n-gon in two dimensions

— a dodecahedron (or its dual, the icosahedron) in 3 d.
— a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

e the symmetry group of the Cartesian product of
lower-dimensional regular polytopes,
e or a subgroup of such a group? ?

Counterexample (Paco Santos, by divisibility). The symmetry
groups of the root systems Eyg, E7, Eg in 6, 7, 8 dimensions.
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~7

e [ W. Threlfall and H. Seifert, Math. Annalen, 1931, 1933 ]
enumerated discrete subgroups of SO(4) (determinant +1)

e [ J. Conway and D. Smith 2003 ]
complete enumeration of point groups

4d-rotation T > pair (R, S) of 3d-rotations. Yaz
(for example, via quaternions)

NA THER
<~ Gromemy,
\4‘ ARTHMETIC,
N AND SYMMETRY

Goursat's Lemma: [ E. Goursat 1890 ]
Pairs of 3d point groups

+ additional information

— 4d point groups

e The groups generated by reflections (Coxeter groups) have
been enumerated up to 8 dimensions.
[ Norman Johnson, unpublished book manuscript ]
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he four-dimensional point groups

Freie Universitit ‘@

=)
(//\,,.‘ 4

umerate the gt

——%ﬂ;,l]a[“)s 1], [137.’.0]’ [lvw]'§
i[IXT] [7:1';1]3["‘)1 1]![1’7']’[1’(‘):!”
i[IXD2n] [ihl]:[w?l]r[Len]v[l:.?]a
[ % Cy) fir, 1) [w, 1, {1, €nls
+[0 x T lio, 1], [w, 1], [1,1], [1,w].;
i[OXD%] [7:011]1 ["‘"’1]&[11871]’ [11.7.];

+1(0 x Dy [i,1], [w, 1], [1, ealsli0, J]
+1(0% Dan)  [51), [w, 11, [1, €n); [1, lilios e2n]
i%[OXDﬁn] ¢, 1], [4, 1]?[1aen]§[iO:j]v[w:33n]
£[0 x Gy [7:031]?[“)’1]:[1:611]3
+5(0 x Cay] (6,1), [w, 1], [1, enlslio, €2n]
£[T x Dyy,] 4, 1], [w, 1], [1, en], [1, 45
[T x ] [6,1], [w, 1], [1, en)s
+1[T x Oy, (6,1], [1, enl;[w, €3n]
%52 x D) e, 1 [1,enl, [1, 155 €20
:ljl[[gzm . lem, 1]’ 19, 1], [17 enl
+§2-[D22: >><< gzn]] lem, 11,1, enlsldyezn)
Dl 6'2:] e TR

Generators . % Table 4.1. The chiral groups

(groups of
orientation-preserving
orthogonal transformations)

[ Conway and Smith 2003 ]

< both m and n must be odd.
[e’m? 1]7 [-7$ 1]7 [11 e’n];[82m7 62'”]
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Table 4.2.
The chiral groups
(continued)

e [w,wL [TfOs;@]

; + 1) +
; + ? T . ]
iy 1, o, 11, B, 21, [1, ol [+3 1.5%)
(6,31, [, 21, (1, ], [1, 53w, w] [*3,3,4%]
[;i:’- 1]’ [‘7’1]" '[1""?:]:*‘"[11 J];[w,w] 2 | ,
slw, wl, [3, 4] 23,3
slw, @), [2, —1) “ .
R 3,3
; + ) + = 3%

lem, 1, [4,1], [1, en], [1, 415
[Em, ] [.7: ] [Il: en]-a :[11.7.]5[821111.-6271]

[em :_111 _[1', eﬁ]; [-.6-2.111, .7] ) [.71 -e'q’_ﬂ]l

. +@ [’4111. X D4n] R S £ .
EalDan XDl fem, 1) (L enlilemy, e8], ] (s.)=1
' Dyny S 5wt m,n odd, (S,Qf) =1
[em! [1! eﬂ] [emfa enf] (31 f) =1
R m,n odd, (S,z.f) L‘l

& Chll’al o jometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018
i Broups, 1I. These groups are mactlv “arthachiral # with A fow'
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Group Extending element H Ta ble 4.3.
T k[IxI]-2 L% .
ol : The achiral groups
Sl 2s or 2 vor —
+(Ix7)-2 * 203,3, T*“. |
+4(IxT)-2s or 2 * O — * - [3,3,3]° or [3,3,3]
+[0x0]-2 * (3,4,3] : 2
+1[0x0]-20r 2 * or *[1,i0] [3,4,3] or [3,4,3]72
+:[0x0]-2 * (3,3,4]
+2:[0x 0] -2 * 2.(3,4]
+5[0%0] - 23 or 2, * Or — * [3,4] or [3,4]°
+2[0x0] - 23 or 2; % Or — % (2,3,3]° or [2,3,3]
[T xT]-2 * (3,4,37]
:i:%[TXT] -2 * [+3: 3,4]
3 [T'xT) -2 * [3,3,4%]
S ) * 2.[*3,4]
+H[TXT) -2 ¥ 2.[3,3]
+35[TxT] - 25 or 2, % or — [*3,4] or [*3,4]°
+35 [T X T - 25 or 2; xor — x 3,3]° or [3,3]
iI.l)ln X Dzn] -2 *
+3[Dsn XDin] -2 or 3 x or * [1,ean]
+3 2[Dan XBM] * Conditions
+4 i(Dan XD4n] 23 or 2, * OF — * n odd
2f[D2nf XD(’) ] 2(«8) 1 3 *[e%f, a+ﬂf] or [1,7] See
T2 [DQHIXD{’) ;1208 or 2 *[eSnf, e ’+'6f] or x[1,7] Text
ij [Cnf X C(”)] 2(7) x[1,e ;ﬂ.;-+1)] in
Mc')l 24 s[lcr ] Appendiz

Table 4.3. Achiral groups.
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£[D2n x Dyy] - 2
£3[Din xDin] - 2 or 3
= i[Dan xﬁ,;n] 2
+3 1[Dan XD4n] 23 or 2,

f[Cnf X C(’)] 2(7)

*

x or *[1,ean]

T xailag Sl @l Table 4.3.
T [IxI]-2 * % 9] Th hiral
+L(Ix1] -2 * 2[3,5] € acnirai groups
FA{IxI]-25 or 21 * OF — * (3,5] or [3,5]°
+&[IxT]-2 * 2.(3,3,3 . ] ]
45X 25 or 21 xor —x 333 or 333 e Project: Visualize
+[0x0] -2 * [3,4,3] : 2 _
+1[0x0]-20r 2 * or *[1,70] [3,4,3] or [3,4,3]72 these grOU pS.
+1[0x0] -2 * (3,3,4] :
+2[0%0] 2 ) A Schlegel diagram of a
+2[(0x0] - 23 or 2; * OF — * [3,4] or [3,4]° .
+22(0x 0] - 25 or 2 * O — * (2,3,3]° or [2,3, 3] 4_p0|ytope WhICh haS
£[TxT]-2 * [3,4,37] "
A * e these symmetries.
+1[T T2 * 3,3,4%]
+1[TxT)-2 * 2.[*3,4]
+5[TxT)-2 " 2.[3,3]
+15[T'xT] - 23 or 2, % Or — * [*3,4] or [*3,4]°
+35[TXT) - 23 or 2, * OF — * [3,3]° or [3,3]

* Conditions
% Or — * n odd
2I[D2nf XD(’) HE 2(6) or 3 x[ed, s, € "+M] or *[L,7] See
a7 [DQNfXD( 5 0] 28) o 3 *[eznbe%*ﬁf] or *[1,7] Text
Al ;'(1,;.;+1)] T
*[1, 7o) Appendiz

7 [Cnf X C(’)] 2(7)
\

Table 4.3. Achiral groups.
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d and naive CONJECTURE:
ne symmetry group of a finite full-dimensional point set in

pace (= a discrete subgroup of O(4)) is

e the symmetry group of a regular d-dimensional polytope:

a regular simplex

a regular n-gon in two dimensions

a dodecahedron (or its dual, the icosahedron) in 3 d.

a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

e the symmetry group of the Cartesian product of
lower-dimensional regular polytopes,
e or a subgroup of such a group? ?
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Bold and naive CONJECTURE:

i The symmetry group of a finite full-dimensional point set in
4-space (= a discrete subgroup of O(4)) is

e the symmetry group of a regular d-dimensional polytope:
— a regular simplex
— a regular n-gon in two dimensions
— a dodecahedron (or its dual, the icosahedron) in 3 d.
— a 24-cell, or a 120-cell (or its dual, the 600-cell) in 4 d.

e the symmetry group of the Cartesian product of
lower-dimensional regular polytopes,

e or a subgroup of such a group? ?

Counterexample: I x C, (group-theoretic product,
but not geometric Cartesian product)
lcosahedron on S? = 12 great circles with regular n-gons in S°
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Counterexample: I x (), (group-theoretic product,
but not geometric Cartesian product)
lcosahedron on S? = 12 great circles with regular n-gons in S°

http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html
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Counterexample: I x (), (group-theoretic product,
but not geometric Cartesian product)
lcosahedron on S? = 12 great circles with regular n-gons in S°

http://www.geom.uiuc.edu/~banchoff/script/b3d/hypertorus.html
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