

The Computational Geometry of Congruence Testing Günter Rote Freie Universität Berlin

The Computational Geometry of Congruence Testing Günter Rote Freie Universität Berlin BA

Overview

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions
- *d* dimensions

Overview

- 1 dimension
- 2 dimensions
- 3 dimensions
- $O(n \log n)$ time
- 4 dimensions J

 tomorrow (joint work with Heuna Kim)
- d dimensions $O(n^{\lceil d/3 \rceil} \log n)$ time [Brass and Knauer 2002] $O(n^{(1+\lfloor d/2 \rfloor)/2} \log n)$ Monte Carlo [Akutsu 1998/Matoušek]

Overview

- 1 dimension
- 2 dimensions
- 3 dimensions
- 4 dimensions J tomorrow (joint work with Heuna Kim)

 $O(n \log n)$ time

- d dimensions $O(n^{\lceil d/3 \rceil} \log n)$ time [Brass and Knauer 2002] $O(n^{(1+\lfloor d/2 \rfloor)/2} \log n)$ Monte Carlo [Akutsu 1998/Matoušek]
- Problem statement and variations
- Dimension reduction as in [Alt, Mehlhorn, Wagener, Welzl]
- The birthday paradox [Akutsu]
- Planar graph isomorphism
- Akutsu's canonical form
- Matoušek's closest pairs
- Atkinson's reduction (pruning/condensation)

Rotation or Rotation+Reflection?

We only need to consider *proper* congruence (orientation-preserving congruence, of determinant +1).

If mirror-congruence is also desired, repeat the test twice, for B and its mirror image B'.

Günter Rote, Freie Universität Berlin The Computational Geometry of Congruence Testing Workshop on Geometric Con

Freie Universität

Congruence = Rotation + Translation

Translation is easy to determine:

The centroid of A must coincide with the centroid of B.

 \rightarrow from now on: All point sets are centered at the origin 0:

$$\sum_{a \in A} a = \sum_{b \in B} b = 0$$

We need to find a rotation around the origin (orthogonal matrix T with determinant +1) which maps A to B: TA = B

Günter Rote, Freie Universität Berlin

The Computational Geometry of Congruence Testing

Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018

Freie Universität 🕅 🐜

🖗 Berlin

Geometric Shapes

Freie Universität

Geometric Shapes

Geometric shapes can be represented by "marked" (colored) point sets.

Exact Arithmetic

Freie Universität

The proper setting for this (mathematical) problem requires real numbers as inputs and exact arithmetic.

 \rightarrow the *Real RAM* model (RAM = random access machine): One elementary operation with real numbers (+, \div , $\sqrt{}$, sin) is counted as one step.

> A regular 5-gon, 7-gon, 8-gon, ... with rational coordinates does not exist in any dimension.

Exact Arithmetic

Freie Universität

The proper setting for this (mathematical) problem requires real numbers as inputs and exact arithmetic.

 \rightarrow the *Real RAM* model (RAM = random access machine): One elementary operation with real numbers (+, \div , $\sqrt{}$, sin) is counted as one step.

A regular 5-gon, 7-gon, 8-gon, ... with rational coordinates does not exist in any dimension. [Arvind, Rattan 2016]: Rational coordinates with L bits: $2^{O(d \log d)} \cdot \operatorname{poly}(nL)$ time (fixed-parameter tractable, FPT) Previously: $2^{O(d^4)} \cdot \operatorname{poly}(nL)$ [Evdokimov, Ponomarenko 1997]

Applications

Congruence testing is the basic problem for many pattern matching tasks

- computer vision
- star matching
- brain matching
- . . .

The proper setting for this applied problem requires tolerances, partial matchings, and other extensions.

Approximate matching

Given two sets A and B in the plane and an error tolerance ε , find a bijection $f: A \to B$ and a congruence T such that

Arbitrary Dimension

$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$.

We consider the problem for fixed dimension d.

 $\begin{array}{ll} \mbox{When } d \mbox{ is unrestricted, the problem is equivalent} \\ \mbox{to graph isomorphism:} & & \\ \mbox{$G = (V, E), V = \{1, 2, \ldots, n\}$} \\ \mbox{$\mapsto A = \{e_1, \ldots, e_n\} \cup \{\frac{e_i + e_j}{2} \mid ij \in E\} \subset \mathbb{R}^n$} \\ \mbox{$$ regular simplex $$} & e_i = (0, \ldots, 0, 1, 0, \ldots, 0)$} \end{array}$

MAIN CONJECTURE:

Congruence can be tested in $O(n \log n)$ time for every fixed dimension d.

Current best bound: $O(n^{\lceil d/3 \rceil} \log n)$ time

Arbitrary Dimension

$$A, B \subset \mathbb{R}^d$$
, $|A| = |B| = n$.

We consider the problem for fixed dimension d.

 $\begin{array}{ll} \mbox{When } d \mbox{ is unrestricted, the problem is equivalent} \\ \mbox{to graph isomorphism:} \\ G = (V, E), \ V = \{1, 2, \ldots, n\} \\ \mapsto A = \underbrace{\{e_1, \ldots, e_n\}}_{\mbox{regular simplex}} \cup \{ \begin{array}{c} \frac{e_i + e_j}{2} \mid ij \in E \ \} \subset \mathbb{R}^n \\ e_i = (0, \ldots, 0, 1, 0, \ldots, 0) \end{array} \\ \end{array}$

MAIN CONJECTURE:

Congruence can be tested in $O(n \log n)$ time for every fixed dimension d.

Current best bound: $O(n^{\lceil d/3 \rceil} \log n)$ time

One dimension

Freie Universität

Trivial.

(after shifting the centroid to the origin and getting rid of reflection):

Test if A = B. $O(n \log n)$ time.

Two dimensions

Can be done by string matching. [Manacher 1976] Sort points around the origin. Encode alternating sequence of distances r_i and angles φ_i .

$$(r_1, \varphi_1; r_2, \varphi_2; \ldots; r_n, \varphi_n)$$

Check whether the corresponding sequence of B is a cyclic shift. $\rightarrow O(n \log n) + O(n)$ time.

Two dimensions

Can be done by string matching. [Manacher 1976] Sort points around the origin. Encode alternating sequence of distances r_i and angles φ_i .

Even more can be done:

Freie Universität

🖗 Berlin

Freie Universität

[Sugihara 1984; Alt, Mehlhorn, Wagener, Welzl 1988]

Project points to the unit sphere, and keep distances as *labels*.

Compute the convex hulls P(A) and P(B), in $O(n \log n)$ time.

Check isomorphism between the corresponding LABELED planar graphs. Vertex labels: from the radial projection

Edge labels: dihedral angles and face angles.

In O(n) time, or in $O(n \log n)$ time. [Hopcroft and Wong 1974] [Hopcroft and Tarjan 1973]

Make some *construction* (midpoints of closest-pair edges, ...)

Simultaneously apply this procedure to B. A' and B' may have *more* congruences!

Günter Rote, Freie Universität Berlin

The Computational Geometry of Congruence Testing

Make some *construction* (midpoints of closest-pair edges, ...)

Simultaneously apply this procedure to B. A' and B' may have *more* congruences!

Günter Rote, Freie Universität Berlin

The Computational Geometry of Congruence Testing

Simultaneously apply this procedure to B. A' and B' may have *more* congruences!

Günter Rote, Freie Universität Berlin

The Computational Geometry of Congruence Testing

Dimension Reduction

Freie Universität

As soon as
$$|A'| = |B'| = k$$
 is small:
Choose a point $a_0 \in A'$ and try all k possibilities of mapping it
to a point $b \in B'$.

Project perpendicular to Oa_0 and label projected points a'_i with the signed projection distance d_i as (a'_i, d_i) .

 \rightarrow 2-dimensional congruence for LABELLED point sets

Dimension Reduction

Freie Universität

As soon as
$$|A'| = |B'| = k$$
 is small:
Choose a point $a_0 \in A'$ and try all k possibilities of mapping it
to a point $b \in B'$.

Fixing $a_0 \mapsto b$ reduces the dimension by one.

One problem in d dimensions is reduced to k problems in d-1 dimensions.

- PRUNE by distance from the origin. If the points lie in f a plane or on a line \rightarrow DIMENSION REDUCTION.
 - Compute the convex hull.
 - If there are vertices of different degrees \rightarrow PRUNE
 - The number n of vertices is reduced to $\leq n/2$. RESTART.
 - All n vertices have now degree 3, 4, or 5.
 - There are $f = \frac{n}{2} + 2$ or f = n + 2 or $f = \frac{3n}{2} + 2$ faces.

If the face degrees are not all equal \rightarrow switch to the centroids of the faces and PRUNE them. n is reduced to $\leq \frac{3n}{4} + 1$. RESTART.

Now P(A) must have the graph of a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

PRUNE by distance from the origin. If the points lie in a plane or on a line \rightarrow DIMENSION REDUCTION. Compute the convex hull. $A \log |A|$ time If there are vertices of different degrees \rightarrow PRUNE The number n of vertices is reduced to $\leq n/2$. RESTART. All n vertices have now degree 3, 4, or 5. There are $f = \frac{n}{2} + 2$ or f = n + 2 or $f = \frac{3n}{2} + 2$ faces. If the face degrees are not all equal \rightarrow switch to the centroids of the faces and PRUNE them. graph-theoretic pruning $n \text{ is reduced to} \leq \frac{3n}{4} + 1. \text{ RESTART.}$ $\mathsf{TIME} =$ $O(n\log n) + O(\frac{3}{4}n\log \frac{3}{4}n) + O((\frac{3}{4})^2n\log((\frac{3}{4})^2n)) + \dots$ $= O(n \log n)$ The Computational Geometry of Congruence Testing Workshop on Geometric Computation and Applications, Trinity College, Dublin, June 17-21, 2018

Freie Universität

The doubly-regular planar graphs: n vertices of degree d_V , f faces of degree d_F , m edges.

$$nd_V = 2m = fd_F$$

$$n + f = m + 2$$
 (Euler's formula)

$$\frac{2}{d_V} + \frac{2}{d_F} = 1 + \frac{2}{m}$$

Freie Universität

Günter Rote, Freie Universität Berlin

PRUNE by distance from the origin. If the points lie in - DIMENSION REDUCTION. a plane or on a line Compute the convex hull. If there are vertices of different degrees \rightarrow PRUNE The number n of vertices is reduced to $\leq n/2$. RESTART. All n vertices have now degree 3, 4, or 5. There are $f = \frac{n}{2} + 2$ or f = n + 2 or $f = \frac{3n}{2} + 2$ faces. If the face degrees are not all equal \rightarrow switch to the centroids of the faces and PRUNE them. $n \text{ is reduced to} \leq \frac{3n}{4} + 1. \text{ RESTART.}$ Now P(A) must have the graph of a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

Freie Universität

PRUNE by distance from the origin. If the points lie in a plane or on a line \rightarrow DIMENSION REDUCTION.

Canonical point sets in 3d:

We get ≤ 20 two-dimensional projected point sets. For each such set:

Rotate the plane to the x-y-plane.

Compute the canonical 2-d point set.

 $\rightarrow \leq 20$ candidates for canonical 3d point sets: Choose the lex-smallest one.

Now P(A) must have the graph of a Platonic solid. $\rightarrow n \leq 20$. \rightarrow DIMENSION REDUCTION.

Freie Universität

PRUNING/CONDENSING in general Freie Universität

Function f(A) = A', $A' \not\subseteq \{0\}$, equivariant under rotations R: f(RA) = RA'

🖗 Berlin

A' has all symmetries of A (and maybe more).

Primary goal: $|A'| \leq |A| \cdot c$, c < 1.

If there is a chance, PRUNE and start from scratch with A' instead of A.

Ultimate goal: $|A| \leq \text{const}$

Continue Atkonson's algorithm with more geometric pruning (instead of just graph-theoretic pruning)

Equivariant condensation on the 2-sphere:

Input: $A \subseteq \mathbb{S}^2$.

Output: $A' \subseteq \mathbb{S}^2$, $|A'| \leq \min\{|A|, 12\}$, A' = f(A) equivariant.

- A' = vertices of a regular icosahedron
- A' = vertices of a regular octahedron
- A' = vertices of a regular tetrahedron
- A' =two antipodal points, or
- A' = a single point.

(will be needed later)

Freie Universität

Symmetry groups

COROLLARY. The symmetry group of a finite full-dimensional point set in 3-space (= a discrete subgroup of O(3)) is

- the symmetry group of a Platonic solid,
- the symmetry group of a regular prism,
- or a subgroup of such a group.

The *point groups* (discrete subgroups of O(3)) are classified (Hessel's Theorem). [F. Hessel 1830, M. L. Frankenheim 1826]

Dimension reduction without pruning:

Pick $a_0 \in A$. Try $a_0 \mapsto b$ for all $b \in B$ (*n* possibilities).

 $\rightarrow O(n^{d-2}\log n)$ time [Alt, Mehlhorn, Wagener, Welzl 1988]

Freie Universität

Freie Universität

Dimension reduction without pruning: Pick $a_0 \in A$. Try $a_0 \mapsto b$ for all $b \in B$ (n possibilities). $\rightarrow O(n^{d-2} \log n)$ time [Alt, Mehlhorn, Wagener, Welzl 1988] Closest pairs (a, a'): [Matoušek \approx 1998]

minimum distance $\delta := ||a - a'||$ among all pairs of vertices

Freie Universität

Dimension reduction without pruning: Pick $a_0 \in A$. Try $a_0 \mapsto b$ for all $b \in B$ (*n* possibilities). $\rightarrow O(n^{d-2} \log n)$ time [Alt, Mehlhorn, Wagener, Welzl 1988]

Closest pairs (a, a'): [Matoušek \approx 1998] minimum distance $\delta := ||a - a'||$ among all pairs of vertices

Degree \leq the *kissing number* K_d (by a packing argument). All closest pairs can be computed in $O(n \log n)$ time (*d* fixed). [Bentley and Shamos, STOC 1976]

Freie Universität

Dimension reduction without pruning: Pick $a_0 \in A$. Try $a_0 \mapsto b$ for all $b \in B$ (*n* possibilities). $\rightarrow O(n^{d-2} \log n)$ time [Alt, Mehlhorn, Wagener, Welzl 1988]

Pick a closest pair a_0a_1 in A. Try $(a_0, a_1) \mapsto (b, b')$ for all closest pairs (b, b') in B. O(n) possibilities, reducing the dimension by two. $\rightarrow O(n^{\lfloor d/2 \rfloor} \log n)$ time [Matoušek \approx 1998]

Life in Four Dimensions

Freie Universität

The birthday paradox in 4 dimensions

Freie Universität

Berlin

Take a random sample $R \subset A$ of size |R| = m Take a random sample $S \subset B$ of size |S| = m

If TA = B, then with high prob., $\exists a \in R, \ \exists b \in S \text{ with } Ta = b$ [$(1 - \frac{m}{n})^m \approx 1 - \frac{m^2}{n} \text{ small }$]

 $\rightarrow \text{ labeled 3D sets } A_1, A_2, \dots, A_m \\ \rightarrow \text{ labeled 3D sets } B_1, B_2, \dots, B_m \ \Big\} A_i \cong B_j$

 $m \times m$ 3D problems $A_i \cong B_j$? (instead of $1 \times n$ 3D problems)

The birthday paradox in 4 dimensions

Take a random sample $R \subset A$ of size |R| = m Take a random sample $S \subset B$ of size |S| = m

If TA = B, then with high prob., $\exists a \in R, \ \exists b \in S \text{ with } Ta = b$ [$(1 - \frac{m}{n})^m \approx 1 - \frac{m^2}{n} \text{ small }$]

 $\rightarrow \text{ labeled 3D sets } A_1, A_2, \dots, A_m \\ \rightarrow \text{ labeled 3D sets } B_1, B_2, \dots, B_m \ \Big\} A_i \cong B_j$

 $m \times m$ 3D problems $A_i \cong B_j$? (instead of $1 \times n$ 3D problems)

Compute canonical 3D sets $c(A_1), \ldots, c(A_m); c(B_1), \ldots, c(B_m)$. Look for duplicates between A and B.

 \rightarrow Monte Carlo algorithm, $O(n^{3/2}\log n)$ time, $O(n^{3/2})$ space in d dimensions: $O(n^{(d-2)/2}\log n)$ time, $O(n^{(d-2)/2})$ space

Freie Universität

🛿 Berlin

Use Closest Pairs in d Dimensions

 $m := \text{const} \cdot \sqrt{n}$. Compute closest-pair graphs $\operatorname{CP}(A)$, $\operatorname{CP}(B)$. Take a random sample $R \subset \operatorname{CP}(A)$ of size |R| = mTake a random sample $S \subset \operatorname{CP}(B)$ of size |S| = m

 \rightarrow labeled sets A_1, A_2, \ldots, A_m in d-2 dimensions \rightarrow labeled sets B_1, B_2, \ldots, B_m in d-2 dimensions

 $\rightarrow O(n^{\lfloor (d-2)/2 \rfloor/2})$ labeled 3D or 2D sets A'_1, A'_2, \dots of size n $\rightarrow O(n^{\lfloor (d-2)/2 \rfloor/2})$ labeled 3D or 2D sets B'_1, B'_2, \dots of size n

Monte Carlo algorithm, $O(n^{(\lfloor d/2 \rfloor + 1)/2} \log n) \text{ time, } O(n^{(\lfloor d/2 \rfloor + 1)/2}) \text{ space}$

[Akutsu 1998, improvement due to J. Matoušek, personal communication]

Freie Universität

Rational Inputs

Consider the *lattice* spanned by the points $A = \{a_1, \ldots, a_n\}$:

$$\Lambda_A := \{ z_1 a_1 + \dots + z_n a_n \mid z_i \in \mathbb{Z} \}$$

Rational Inputs

Consider the *lattice* spanned by the points $A = \{a_1, \ldots, a_n\}$:

$$\Lambda_A := \{ z_1 a_1 + \dots + z_n a_n \mid z_i \in \mathbb{Z} \}$$

Shortest vectors in Λ_A must be mapped to shortest vectors in Λ_B . \rightarrow at most 6 choices.

Integer coordinates with L bits: $O(n \log L + n \log n)$ arithmetic operations

In *d* dimensions:

- at most $K_d \leq 3^d$ shortest vectors - at most $\binom{3^d}{d}$ choices of a basis

"Geometric graph isomorphism" [Arvind, Rattan 2016]

Related: Unimodular Transformations

 $A, B \subset \mathbb{Z}^d$, integer coordinates with L bits

Unimodular transformations:

Integer matrix T (not necessarily orthogonal) with determinant ± 1 , such that TA = B

Applications in algebra

Runtime: $O(F_d \cdot n \log^2 n \cdot L)$ arithmetic operations [Paolini, DCG 2017]

Fixed-parameter tractable (FPT)

4 Dimensions: Algorithm Overview

joint work with Heuna Kim

