Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Data Structure Analysis

Conclusions

Approximation Algorithms for Geometric Proximity Problems: Part II: Approximating Convex Bodies

David M. Mount

Department of Computer Science & Institute for Advanced Computer Studies University of Maryland, College Park

Joint with: Ahmed Abdelkader, Sunil Arya, and Guilherme da Fonseca

HMI-GCA Workshop 2018

Geometric Queries with Convex Bodies

Preprocess a geometric set to answer queries efficiently

Preliminaries

Introduction

Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Focus on convex bodies: closed, bounded convex sets:

- **Convex hull** of a set of *n* points in \mathbb{R}^d
- Intersection of a set of n closed halfspaces in \mathbb{R}^d (within an enclosure)

Sample queries:

- Membership/Containment: $q \in P$?, $Q \subseteq P$?
- Intersection: $Q \cap P \neq \emptyset$?
- **Extrema**: Ray shooting, directional extrema (linear-programming queries)
- Distance: Directional width, longest parallel segment, separation distance

Assumptions

- Bodies reside in \mathbb{R}^d , where d is a constant. Bodies are full dimensional.
- Euclidean distance

Geometric Queries with Convex Bodies

Gold Standard for exact queries: O(n) space and $O(\log n)$ query time

Preliminaries

- Introduction
- Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry
- APM Queries Data Structure Analysis
- Conclusions

- Good exact solutions exist in \mathbb{R}^2 and $\mathbb{R}^3,$ but not in higher dimensions:
 - The worst-case combinatorial complexity grows as $O(n^{\lfloor \frac{d}{2} \rfloor})$
 - Point membership, halfspace emptiness, ray shooting:
 ℝ², ℝ³: O(n) space, O(log n) query time
 ℝ^d: O(n) space, Õ(n^{1-²/d}) query time [Matoušek 92]
 - Intersection detection of preprocessed convex polytopes:
 - \mathbb{R}^2 : O(n) space, $O(\log n)$ query time [Dobkin and Kirkpatrick 83]
 - \mathbb{R}^3 : O(n) space, $O(\log^2 n)$ query time [Dobkin and Kirkpatrick 90] O(n) space, $O(\log n)$ query time [Barba and Langerman 15]
 - \mathbb{R}^d : $O(\log n)$ query time but space $O(N^{\lfloor \frac{d}{2} \rfloor})$ where N = total combinatorial complexity [Barba and Langerman 15]

Approximating Convex Bodies

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Given a convex body K, and $\varepsilon > 0$:

- Inner ε -approximation: Any set $K_{\varepsilon}^{-} \subseteq K$ within Hausdorff distance $\varepsilon \cdot \operatorname{diam}(K)$ of K
- Outer ε -approximation: Any set $K_{\varepsilon}^+ \supseteq K$ within Hausdorff distance $\varepsilon \cdot \operatorname{diam}(K)$ of K

The representation often suggests which. Let P be point set, and \mathcal{H} a set of halfspaces

- $K = \operatorname{conv}(P)$: Inner approximation $K_{\varepsilon}^{-} = \operatorname{conv}(P')$ for some $P' \subseteq P$
- $\mathcal{K} = \bigcap(\mathcal{H})$: Outer approximation $\mathcal{K}_{\varepsilon}^+ = \bigcap(\mathcal{H}')$, for some $\mathcal{H}' \subseteq \mathcal{H}$
- Many queries are equivalent through point-hyperplane duality
- Most results can be adapted to any combination inner/outer, point/halfspace

Approximate Geometric Queries

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

ε-Approximate Query

An answer is valid if it is consistent with any ε -approximation to K

- It is often useful to have a directionally sensitive notion of approximation
 - Given a vector v, define width_v(K) to be the minimum distance between two hyperplanes orthogonal to v that enclose K.
 - Width-sensitive (outer) ε-approximation: Any set K⁺_ε ⊇ K such that width_ν(K⁺) ≤ (1 + ε) ⋅ width_ν(K), for all ν.

Width-Sensitive Approximation

An answer is valid if it is consistent with any width-sensitive ε -approximation to K

γ -Canonical Form

K is nested between two origin-centered balls of radii $\gamma/2$ and 1/2

- Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry
- APM Queries Data Structure Analysis
- Conclusions

- Can convert to ¹/_d-canonical form in O(n) time John's Theorem + fast minimum enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]
- Since diameter \leq 1, can use absolute error of ε
- Uniform approximation to TK induces a width-sensitive approximation to K

γ -Canonical Form

K is nested between two origin-centered balls of radii $\gamma/2$ and 1/2

- Can convert to ¹/_d-canonical form in O(n) time John's Theorem + fast minimum enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]
- Since diameter \leq 1, can use absolute error of ε
- Uniform approximation to TK induces a width-sensitive approximation to K

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

- APM Queries Data Structure Analysis
- Conclusions

γ -Canonical Form

K is nested between two origin-centered balls of radii $\gamma/2$ and 1/2

- Can convert to ¹/_d-canonical form in O(n) time John's Theorem + fast minimum enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]
- Since diameter \leq 1, can use absolute error of ε
- Uniform approximation to TK induces a width-sensitive approximation to K

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

- APM Queries Data Structure Analysis
- Conclusions

γ -Canonical Form

K is nested between two origin-centered balls of radii $\gamma/2$ and 1/2

- Can convert to ¹/_d-canonical form in O(n) time John's Theorem + fast minimum enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]
- Since diameter \leq 1, can use absolute error of ε
- Uniform approximation to TK induces a width-sensitive approximation to K

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

γ -Canonical Form

K is nested between two origin-centered balls of radii $\gamma/2$ and 1/2

- Can convert to ¹/_d-canonical form in O(n) time John's Theorem + fast minimum enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]
- Since diameter \leq 1, can use absolute error of ε
- Uniform approximation to TK induces a width-sensitive approximation to K

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

γ -Canonical Form

K is nested between two origin-centered balls of radii $\gamma/2$ and 1/2

- Can convert to ¹/_d-canonical form in O(n) time John's Theorem + fast minimum enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]
- Since diameter ≤ 1 , can use absolute error of ε
- Uniform approximation to TK induces a width-sensitive approximation to K

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

- APM Queries Data Structure Analysis
- Conclusions

γ -Canonical Form

K is nested between two origin-centered balls of radii $\gamma/2$ and 1/2

- Can convert to ¹/_d-canonical form in O(n) time John's Theorem + fast minimum enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]
- Since diameter \leq 1, can use absolute error of ε
- Uniform approximation to TK induces a width-sensitive approximation to K

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

- APM Queries Data Structure Analysis
- Conclusions

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Query: ε -Approximate Polytope Membership (ε -APM)

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

erformance:

Query time: $O(\log \frac{1}{\varepsilon})$ — Quadtree descent Storage: $O(1/\varepsilon^{d-1})$ — No. of leaves \leftarrow independent o

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Query: ε -Approximate Polytope Membership (ε -APM)

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

erformance:

Query time: $O(\log rac{1}{arepsilon}) \longrightarrow$ Quadtree descent Storage: $O(1/arepsilon^{d-1}) \longrightarrow$ No. of leaves \longleftarrow independent c

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Query: ε -Approximate Polytope Membership (ε -APM)

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

erformance:

Query time: $O(\lograc{1}{arepsilon})$ — Quadtree descent Storage: $O(1/arepsilon^{d-1})$ — No. of leaves — independent o

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Query: ε -Approximate Polytope Membership (ε -APM)

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

'erformance:

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Query: ε -Approximate Polytope Membership (ε -APM)

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

erformance:

Query time: $O(\lograc{1}{arepsilon})$ — Quadtree descent Storage: $O(1/arepsilon^{d-1})$ — No. of leaves — independent c

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Query: ε -Approximate Polytope Membership (ε -APM)

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Performance:

Query time: $O(\log rac{1}{arepsilon}) \longrightarrow \mathsf{Q}$ uadtree descent Storage: $O(1/arepsilon^{d-1}) \longrightarrow \mathsf{No.}$ of leaves \longleftarrow independent o

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Query: ε -Approximate Polytope Membership (ε -APM)

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

erformance:

Query time: $O(\log \frac{1}{\varepsilon})$ — Quadtree descent Storage: $O(1/\varepsilon^{d-1})$ — No. of leaves — independent

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Query: ε -Approximate Polytope Membership (ε -APM)

- Preprocessing: Build a quadtree, subdividing each node that cannot be resolved as being inside or outside
- Stop at diameter ε
- Query: Find the leaf node containing q and return its label

Performance:

Query time: $O(\log \frac{1}{\varepsilon})$ — Quadtree descent Storage: $O(1/\varepsilon^{d-1})$ — No. of leaves \leftarrow independent of *n*

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

(Dudley 1974), (Bronshteyn and Ivanov 1976)

- Transform *K* into canonical form
- $\blacksquare B \leftarrow \text{ball of radius 2}$
- $N \leftarrow \sqrt{\varepsilon}$ -net on B
- $N' \leftarrow$ closest points on K to each point of N
- $\blacksquare \ K_{\varepsilon}^{-} \leftarrow \operatorname{conv}(N')$
- $K_{\varepsilon}^+ \leftarrow$ intersection of tangent halfspaces

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

(Dudley 1974), (Bronshteyn and Ivanov 1976)

A convex body of unit diameter can be inner (outer) ε -approximated by a polytope with $O(1/\varepsilon^{\frac{d-1}{2}})$ vertices (facets)

Transform *K* into canonical form

- $\blacksquare B \leftarrow \text{ball of radius 2}$
- $N \leftarrow \sqrt{\varepsilon}$ -net on B
- $N' \leftarrow$ closest points on K to each point of N
- $\blacksquare K_{\varepsilon}^{-} \leftarrow \operatorname{conv}(N')$
- $K_{\varepsilon}^+ \leftarrow$ intersection of tangent halfspaces

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

(Dudley 1974), (Bronshteyn and Ivanov 1976)

- Transform *K* into canonical form
- $\blacksquare B \leftarrow \text{ball of radius 2}$
- $N \leftarrow \sqrt{\varepsilon}$ -net on B
- $N' \leftarrow$ closest points on K to each point of N
- $K_{\varepsilon}^{-} \leftarrow \operatorname{conv}(N')$
- $K_{\varepsilon}^+ \leftarrow$ intersection of tangent halfspaces

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

(Dudley 1974), (Bronshteyn and Ivanov 1976)

- Transform *K* into canonical form
- $\blacksquare B \leftarrow \text{ball of radius 2}$
- $N \leftarrow \sqrt{\varepsilon}$ -net on B
- $N' \leftarrow$ closest points on K to each point of N
- $K_{\varepsilon}^{-} \leftarrow \operatorname{conv}(N')$
- $K_{\varepsilon}^+ \leftarrow$ intersection of tangent halfspaces

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

(Dudley 1974), (Bronshteyn and Ivanov 1976)

- Transform *K* into canonical form
- $\blacksquare B \leftarrow \text{ball of radius 2}$
- $N \leftarrow \sqrt{\varepsilon}$ -net on B
- $N' \leftarrow$ closest points on K to each point of N
- $\blacksquare K_{\varepsilon}^{-} \leftarrow \operatorname{conv}(N')$
- $K_{\varepsilon}^+ \leftarrow$ intersection of tangent halfspaces

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

(Dudley 1974), (Bronshteyn and Ivanov 1976)

- Transform *K* into canonical form
- $B \leftarrow \text{ball of radius 2}$
- $N \leftarrow \sqrt{\varepsilon}$ -net on B
- $N' \leftarrow$ closest points on K to each point of N
- $K_{\varepsilon}^{-} \leftarrow \operatorname{conv}(N')$
- $K_{\varepsilon}^+ \leftarrow$ intersection of tangent halfspaces

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

(Dudley 1974), (Bronshteyn and Ivanov 1976)

- Transform *K* into canonical form
- $\blacksquare B \leftarrow \text{ball of radius 2}$
- $N \leftarrow \sqrt{\varepsilon}$ -net on B
- $N' \leftarrow$ closest points on K to each point of N
- $K_{\varepsilon}^{-} \leftarrow \operatorname{conv}(N')$
- $K_{\varepsilon}^+ \leftarrow$ intersection of tangent halfspaces

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Worst-Case Optimality

- Consider a unit ball B and it ε -expansion B^+
- Any approximating facet cannot extend beyond B⁺
- Extension beyond distance $\sqrt{3\varepsilon}$ goes too far
- Facet normals must be $O(\sqrt{\varepsilon})$ -dense
- Need $\Omega((\frac{1}{\sqrt{\varepsilon}})^{d-1}) = \Omega(1/\varepsilon^{\frac{d-1}{2}})$ facets

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Worst-Case Optimality

- Consider a unit ball B and it ε -expansion B^+
- Any approximating facet cannot extend beyond B⁺
- **Extension beyond distance** $\sqrt{3\varepsilon}$ goes too far
- Facet normals must be $O(\sqrt{\varepsilon})$ -dense
- Need $\Omega((\frac{1}{\sqrt{\varepsilon}})^{d-1}) = \Omega(1/\varepsilon^{\frac{d-1}{2}})$ facets

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Worst-Case Optimality

- Consider a unit ball B and it ε -expansion B^+
- Any approximating facet cannot extend beyond B⁺
- **Extension** beyond distance $\sqrt{3\varepsilon}$ goes too far
- Facet normals must be $O(\sqrt{\varepsilon})$ -dense
- Need $\Omega((\frac{1}{\sqrt{\varepsilon}})^{d-1}) = \Omega(1/\varepsilon^{\frac{d-1}{2}})$ facets

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Worst-Case Optimality

- Consider a unit ball B and it ε -expansion B^+
- Any approximating facet cannot extend beyond B⁺
- Extension beyond distance $\sqrt{3\varepsilon}$ goes too far
- Facet normals must be $O(\sqrt{\varepsilon})$ -dense
- Need $\Omega((\frac{1}{\sqrt{\varepsilon}})^{d-1}) = \Omega(1/\varepsilon^{\frac{d-1}{2}})$ facets

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Worst-Case Optimality

- Consider a unit ball B and it ε -expansion B^+
- Any approximating facet cannot extend beyond B⁺
- Extension beyond distance $\sqrt{3\varepsilon}$ goes too far
- Facet normals must be $O(\sqrt{\varepsilon})$ -dense
- Need $\Omega((\frac{1}{\sqrt{\varepsilon}})^{d-1}) = \Omega(1/\varepsilon^{\frac{d-1}{2}})$ facets

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Worst-Case Optimality

- Consider a unit ball B and it ε -expansion B^+
- Any approximating facet cannot extend beyond B⁺
- Extension beyond distance $\sqrt{3\varepsilon}$ goes too far
- Facet normals must be $O(\sqrt{\varepsilon})$ -dense
- Need $\Omega((\frac{1}{\sqrt{\varepsilon}})^{d-1}) = \Omega(1/\varepsilon^{\frac{d-1}{2}})$ facets

Achieving the Gold Standard

An approach to convex approximation that is space and time optimal:

ε -Approximate Polytope Membership (ε -APM):

```
Query time: O(\log \frac{1}{\varepsilon})
Storage: O(1/\varepsilon^{\frac{d-1}{2}})
```

Numerous applications:

- Best known space-time tradeoffs for ε-approximate Euclidean nearest neighbor searching (Arya et al. 2011, Arya, et al. 2012)
- Near worst-case optimal computation of ε-kernels and approximating the diameter of a convex body (Arya et al. 2017)
- Best known algorithms for approximating bichromatic closest pairs and bottleneck Euclidean minimum spanning trees (Arya et al. 2017)
- Best known algorithm for computing an ε-approximation to the width of a convex body (Arya et al. 2018)

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard

New Approach

Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Intuition - Hierarchy of Covers by Balls

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none \Rightarrow "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Preliminaries Introduction

Canonical Form Quadtree-based Gold Standard

New Approach Our Results Intuition

Metric Spaces Delone Sets Macbeath Regions

Hilbert Geometry APM Queries Data Structure Analysis Conclusions

Convex Approximations

> Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Intuition - Hierarchy of Covers by Balls

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none \Rightarrow "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Preliminaries Introduction Convex

Approximations

Canonical Form

Quadtree-based Gold Standard

New Approach Our Results Intuition

Metric Spaces Delone Sets Macbeath Regions

Hilbert Geometry APM Queries Data Structure Analysis Conclusions

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none \Rightarrow "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Preliminaries Introduction Convex

Approximations

Canonical Form

Quadtree-based Gold Standard

New Approach Our Results Intuition

Metric Spaces Delone Sets Macbeath Regions

Hilbert Geometry APM Queries Data Structure Analysis Conclusions

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none \Rightarrow "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Preliminaries Introduction Convex

Approximations

Canonical Form

Quadtree-based Gold Standard

New Approach Our Results Intuition

Metric Spaces Delone Sets Macbeath Regions

Hilbert Geometry APM Queries Data Structure Analysis Conclusions

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none \Rightarrow "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Preliminaries

Data Structure Analysis

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none \Rightarrow "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Preliminaries

Data Structure Analysis

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert Geometry

Preliminaries

APM Queries Data Structure Analysis

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Preliminaries Introduction Convex

Approximations

Canonical Form Quadtree-based Gold Standard

New Approach

Metric Spaces Delone Sets

Macbeath Regions

Hilbert Geometry APM Queries Data Structure Analysis Conclusions

Our Results Intuition

> Query: $O(\log \frac{1}{\epsilon})$ (Log depth, constant degree) Storage: $O(1/\epsilon^d)$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Preliminaries Introduction

Canonical Form Quadtree-based Gold Standard

New Approach

Metric Spaces Delone Sets

Macbeath Regions

Hilbert Geometry APM Queries Data Structure Analysis Conclusions

Our Results Intuition

Convex Approximations

> Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none \Rightarrow "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Delone Sets Macbeath Regions Hilbert Geometry

Preliminaries

APM Queries Data Structure Analysis

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

nalysis:

Preliminaries Introduction

Canonical Form Quadtree-based Gold Standard

New Approach

Metric Spaces Delone Sets

Macbeath Regions

Hilbert

Geometry APM Queries Data Structure Analysis Conclusions

Our Results Intuition

Convex Approximations

> Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Hierarchy of covering balls:

- Preprocessing: Cover K by balls of diameter $1, \frac{1}{2}, \frac{1}{4}, \ldots, \varepsilon$
- DAG Structure: Each ball stores pointers to overlapping balls at next level
- Query: Find any ball at each level that contains q. If none ⇒ "outside".
- Need only check O(1) balls that overlap previous

Analysis:

Preliminaries Introduction

Canonical Form Quadtree-based

Gold Standard

New Approach

Metric Spaces Delone Sets

Macbeath Regions

Hilbert

Geometry APM Queries Data Structure

Analysis Conclusions

Our Results Intuition

Convex Approximations

> Query: $O(\log \frac{1}{\varepsilon})$ (Log depth, constant degree) Storage: $O(1/\varepsilon^d)$ (Number of leaves)

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

APM Queries Data Structure Analysis

Conclusions

The balls yield hierarchical covering of K by balls, but are their more economical solutions? Yes! But first we need to recall a bit about ...

Metric Space: A set X and distance measure $f : X \times X \to \mathbb{R}$ that satisfies:

- Nonnegativity: $f(x, y) \ge 0$, and f(x, y) = 0 if and only if x = y
- Symmetry: f(x, y) = f(y, x)
- Triangle Inequality: $f(x,z) \leq f(x,y) + f(y,z)$.

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Data Structure Analysis

Conclusions

The balls yield hierarchical covering of K by balls, but are their more economical solutions? Yes! But first we need to recall a bit about ...

Metric Space: A set X and distance measure $f : X \times X \to \mathbb{R}$ that satisfies:

- Nonnegativity: $f(x, y) \ge 0$, and f(x, y) = 0 if and only if x = y
- Symmetry: f(x, y) = f(y, x)
- Triangle Inequality: $f(x, z) \leq f(x, y) + f(y, z)$.

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries Data Structure Analysis

Conclusions

A subset $X \subseteq \mathbb{X}$ is an:

- ε -packing: If the balls of radius $\varepsilon/2$ centered at every point of X are disjoint
- ε -covering: If every point of $\mathbb X$ is within distance ε of some point of X
- $(\varepsilon_p, \varepsilon_c)$ -Delone Set: If X is an ε_p -packing and an ε_c -covering
- ε -net^a: If it is an $(\varepsilon, \varepsilon)$ -Delone set

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

APM Queries Data Structure Analysis

Conclusions

A subset $X \subseteq \mathbb{X}$ is an:

- ε -packing: If the balls of radius $\varepsilon/2$ centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- $(\varepsilon_p, \varepsilon_c)$ -Delone Set: If X is an ε_p -packing and an ε_c -covering
- ε -net^a: If it is an $(\varepsilon, \varepsilon)$ -Delone set

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Data Structure Analysis

Conclusions

A subset $X \subseteq \mathbb{X}$ is an:

- ε -packing: If the balls of radius $\varepsilon/2$ centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- $(\varepsilon_p, \varepsilon_c)$ -Delone Set: If X is an ε_p -packing and an ε_c -covering
- ε -net^a: If it is an $(\varepsilon, \varepsilon)$ -Delone set

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

A subset $X \subseteq \mathbb{X}$ is an:

- ε -packing: If the balls of radius $\varepsilon/2$ centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -net^a: If it is an $(\varepsilon, \varepsilon)$ -Delone set

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

A subset $X \subseteq \mathbb{X}$ is an:

- ε -packing: If the balls of radius $\varepsilon/2$ centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -net^a: If it is an $(\varepsilon, \varepsilon)$ -Delone set

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Data Structure Analysis

Conclusions

A subset $X \subseteq \mathbb{X}$ is an:

- ε -packing: If the balls of radius $\varepsilon/2$ centered at every point of X are disjoint
- ε-covering: If every point of X is within distance ε of some point of X
- (ε_p, ε_c)-Delone Set: If X is an ε_p-packing and an ε_c-covering
- ε -net^a: If it is an $(\varepsilon, \varepsilon)$ -Delone set

We seek economical Delone sets for K, that fit within K's δ -expansion for $\delta = 1, \frac{1}{2}, \frac{1}{4}, \dots, \varepsilon$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries Data Structure

Analysis

- Euclidean balls are not sensitive to K's shape
- Want metric balls that conform locally

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

- Euclidean balls are not sensitive to K's shape
- Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

 $\blacksquare M_K^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$

• $M_K(x) = M_K^1(x)$: Intersection of K and K's reflection around x

• $M_{\kappa}^{\lambda}(x)$: Scaling of $M_{\kappa}(x)$ by factor λ

K ×

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets

Macbeath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

- Euclidean balls are not sensitive to K's shape
- Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

 $\blacksquare M_K^{\lambda}(x) = x + \lambda((K - x) \cap (x - K))$

M_K(x) = M¹_K(x): Intersection of *K* and *K*'s reflection around *x*

• $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

- Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces
- Delone Sets Macbeath Regions Hilbert Geometry
- APM Queries Data Structure Analysis
- Conclusions

- Euclidean balls are not sensitive to K's shape
- Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- M_K(x) = M¹_K(x): Intersection of K and K's reflection around x
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

K $M_{\mathbf{K}}(\mathbf{x})$ X 2x - K

- Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces
- Delone Sets Macbeath Regions Hilbert Geometry
- APM Queries Data Structure Analysis
- Conclusions

- Euclidean balls are not sensitive to K's shape
- Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- *M_K(x) = M¹_K(x)*: Intersection of *K* and *K*'s reflection around *x*
- $M_{\mathcal{K}}^{\lambda}(x)$: Scaling of $M_{\mathcal{K}}(x)$ by factor λ

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces

Delone Sets Macbeath Regions Hilbert Geometry

- APM Queries Data Structure Analysis
- Conclusions

- Euclidean balls are not sensitive to K's shape
- Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K, $x \in K$, and $\lambda > 0$:

- $M_K^{\lambda}(x) = x + \lambda((K x) \cap (x K))$
- *M_K(x) = M¹_K(x)*: Intersection of *K* and *K*'s reflection around *x*
- $M_{K}^{\lambda}(x)$: Scaling of $M_{K}(x)$ by factor λ

Properties of Macbeath Regions

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Data Structure Analysis

Conclusions

Properties:

- Symmetry: M^λ(x) is convex and centrally symmetric about x
- Expansion-Containment: [Ewald et al (1970)] If for $\lambda < 1$, $M^{\lambda}(x)$ and $M^{\lambda}(y)$ intersect, then

 $M^{\lambda}(y) \subseteq M^{c\lambda}(x), \;\; ext{where}\; c = rac{3+\lambda}{1-\lambda}.$

Upshot: By expansion-containment, shrunken Macbeath regions behave "like" Euclidean balls, but they conform locally to K's boundary

Properties of Macbeath Regions

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Delone Sets Macbeath Regions

Geometry APM Queries

Data Structure Analysis

Conclusions

Properties:

- Symmetry: M^λ(x) is convex and centrally symmetric about x
- **Expansion-Containment:** [Ewald et al (1970)] If for $\lambda < 1$, $M^{\lambda}(x)$ and $M^{\lambda}(y)$ intersect, then

 $M^{\lambda}(y) \subseteq M^{c\lambda}(x), \;\; ext{where} \; c = rac{3+\lambda}{1-\lambda}.$

Jpshot: By expansion-containment, shrunken Macbeath regions behave "like" Euclidean balls, but they conform ocally to *K*'s boundary

Properties of Macbeath Regions

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions

APM Queries Data Structure Analysis

Geometry

Conclusions

Properties:

- Symmetry: M^λ(x) is convex and centrally symmetric about x
- **Expansion-Containment:** [Ewald et al (1970)] If for $\lambda < 1$, $M^{\lambda}(x)$ and $M^{\lambda}(y)$ intersect, then

$$M^{\lambda}(y) \subseteq M^{c\lambda}(x), ext{ where } c = rac{3+\lambda}{1-\lambda}.$$

Upshot: By expansion-containment, shrunken Macbeath regions behave "like" Euclidean balls, but they conform locally to K's boundary

Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Preliminaries

Data Structure Analysis

Conclusions

Macbeath regions can be combinatorially complex. Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq M \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath ellipsoid:

= E(x): maximum volume ellipsoid in M(x) $= E^{\lambda}(x): \text{ scaling by factor } \lambda$ $= E^{\lambda}(x) \subset M^{\lambda}(x) \subset E^{\lambda\sqrt{d}}(x)$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries Data Structure

Analysis Conclusions

Macbeath regions can be combinatorially complex. Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq M \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath ellipsoid:

■ E(x): maximum volume ellipsoid in M(x)■ $E^{\lambda}(x)$: scaling by factor λ = $E^{\lambda}(x) \subset M^{\lambda}(x) \subset E^{\lambda\sqrt{d}}(x)$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Macbeath regions can be combinatorially complex. Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq M \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath ellipsoid:

- E(x): maximum volume ellipsoid in M(x)
- $E^{\lambda}(x)$: scaling by factor λ
- $E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries Data Structure

Analysis Conclusions

Macbeath regions can be combinatorially complex. Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in \mathbb{R}^d , there exist ellipsoids E_1, E_2 such that $E_1 \subseteq M \subseteq E_2$ and E_2 is a \sqrt{d} -scaling of E_1

Macbeath ellipsoid:

- E(x): maximum volume ellipsoid in M(x)
- $E^{\lambda}(x)$: scaling by factor λ
- $E^{\lambda}(x) \subseteq M^{\lambda}(x) \subseteq E^{\lambda\sqrt{d}}(x)$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

APM Queries Data Structure Analysis

Conclusions

Delone sets from Macbeath ellipsoids:

For $\delta > 0$, let K_{δ} be an expansion of K by distance δ

• Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$

• Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_0}(x)$ are disjoint for all $x \in X_{\delta}$

• Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

/lacbeath-Based Delone Set

 X_δ is essentially a $(rac{1}{2}, 2\lambda_0)$ -Delone set for K

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_0}(x)$ are disjoint for all $x \in X_{\delta}$
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

/lacbeath-Based Delone Set

 X_δ is essentially a $(rac{1}{2}, 2\lambda_0)$ -Delone set for K

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Delone Sets Macbeath Regions

Geometry

Data Structure Analysis

Conclusions

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_0}(x)$ are disjoint for all $x \in X_{\delta}$
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

Macbeath-Based Delone Set

X $_\delta$ is essentially a $(rac{1}{2}, 2\lambda_0)$ -Delone set for K

(Ellipsoids not drawn to scale)

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions

Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_0}(x)$ are disjoint for all $x \in X_{\delta}$
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

/lacbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

(Ellipsoids not drawn to scale)

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions

Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Delone sets from Macbeath ellipsoids:

- For $\delta > 0$, let K_{δ} be an expansion of K by distance δ
- Let λ_0 be a small constant $(1/(4\sqrt{d}+1))$
- Let $X_{\delta} \subset K$ be a maximal set of points such that $E^{\lambda_0}(x)$ are disjoint for all $x \in X_{\delta}$
- Exp-containment $\Rightarrow \bigcup_{x \in X_{\delta}} E^{\frac{1}{2}}(x)$ cover K

Macbeath-Based Delone Set

 X_{δ} is essentially a $(\frac{1}{2}, 2\lambda_0)$ -Delone set for K

(Ellipsoids not drawn to scale)
Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert

Geometry APM Queries Data Structure

Analysis

Conclusions

Delone sets are defined in a metric space. What's the metric?

■ Hilbert Metric: Given $x, y \in K$, let x' and y' be the intersection of \overleftarrow{xy} with ∂K . Define

$$f_{K}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

Ball: $B_H(x,\delta) = \{y \in K : f_K(x,y) \le \delta\}$

acbeath Regions and Hilbert Balls

or all $x \in K$ and $0 \le \lambda < 1$:

$$B_Hig(x,\ln{(1+\lambda)}ig)\subseteq M^\lambda(x)\subseteq B_Hig(x,\ln{rac{1}{1-\lambda}}ig)$$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

- Delone sets are defined in a metric space. What's the metric?
- Hilbert Metric: Given $x, y \in K$, let x' and y' be the intersection of \overleftarrow{xy} with ∂K . Define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

Ball: $B_H(x,\delta) = \{y \in K : f_K(x,y) \le \delta\}$

acbeath Regions and Hilbert Balls

or all $x \in K$ and $0 \le \lambda < 1$:

$$B_Hig(x,\ln{(1+\lambda)}ig)\subseteq M^\lambda(x)\subseteq B_Hig(x,\ln{rac{1}{1-\lambda}}ig)$$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis I

Conclusions

- Delone sets are defined in a metric space. What's the metric?
- Hilbert Metric: Given $x, y \in K$, let x' and y' be the intersection of \overleftarrow{xy} with ∂K . Define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

Ball:
$$B_H(x, \delta) = \{y \in K : f_K(x, y) \le \delta\}$$

acbeath Regions and Hilbert Balls

for all $x \in K$ and $0 \le \lambda < 1$:

$$B_Hig(x,\ln{(1+\lambda)}ig)\subseteq M^\lambda(x)\subseteq B_Hig(x,\ln{rac{1}{1-\lambda}}ig)$$

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert

Geometry

APM Queries Data Structure Analysis

Conclusions

- Delone sets are defined in a metric space. What's the metric?
- Hilbert Metric: Given $x, y \in K$, let x' and y' be the intersection of \overleftarrow{xy} with ∂K . Define

$$f_{\mathcal{K}}(x,y) = \frac{1}{2} \ln \left(\frac{\|x'-y\|}{\|x'-x\|} \frac{\|x-y'\|}{\|y-y'\|} \right)$$

Ball:
$$B_H(x,\delta) = \{y \in K : f_K(x,y) \le \delta\}$$

Macbeath Regions and Hilbert Balls

For all $x \in K$ and $0 \le \lambda < 1$:

$$B_Hig(x,\ln{(1+\lambda)}ig)\subseteq M^\lambda(x)\subseteq B_Hig(x,\ln{rac{1}{1-\lambda}}ig)$$

Preprocessing:

Preliminaries Introduction

Canonical Form Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose
 - $\frac{1}{2}$ -scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- **Descend the DAG from root (level** ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose $\frac{1}{2}$ -scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- \blacksquare Descend the DAG from root (level $\ell)$ until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* − 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- \blacksquare Descend the DAG from root (level $\ell)$ until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose $\frac{1}{2}$ -scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

uery Processing:

- \blacksquare Descend the DAG from root (level $\ell)$ until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions

Preliminaries

```
Geometry
APM Queries
```

Data Structure Analysis

```
Conclusions
```

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure Analysis

Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* − 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- \blacksquare Descend the DAG from root (level $\ell)$ until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose $\frac{1}{2}$ -scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- **Descend the DAG from root (level** ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose $\frac{1}{2}$ -scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- **Descend the DAG from root (level** ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow \text{Macbeath Delone set for } K_{\delta_i}$
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* − 1 whose ¹/₂-scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose $\frac{1}{2}$ -scale Macbeath ellipsoids overlap
- Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure

Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose $\frac{1}{2}$ -scale Macbeath ellipsoids overlap

• Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose $\frac{1}{2}$ -scale Macbeath ellipsoids overlap

• Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions

Preliminaries

Geometry

APM Queries Data Structure Analysis Conclusions

Preprocessing:

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level i 1 whose $\frac{1}{2}$ -scale Macbeath ellipsoids overlap

• Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

Query Processing:

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macbeath Regions Hilbert

Preliminaries

Geometry APM Queries

Data Structure Analysis Conclusions

Preprocessing:

Preliminaries Introduction

Canonical Form

Quadtree-based

Gold Standard New Approach

Our Results

Delone Sets Macheath

APM Queries Data Structure

Analysis Conclusions

Intuition Metric Spaces

Regions Hilbert Geometry

Convex Approximations

- Input: K and $\varepsilon > 0$
- For i = 0, 1, ...
 - $\delta_i \leftarrow 2^i \varepsilon$
 - $X_i \leftarrow Macbeath$ Delone set for K_{δ_i}
 - Create a node at level *i* for each $x \in X_i$
 - Create child links to nodes at level *i* − 1 whose ¹/₂-scale Macbeath ellipsoids overlap

• Stop when $|E_{\ell}| = 1$ (at $\delta_{\ell} = O(1)$)

- Descend the DAG from root (level ℓ) until:
 - $q \notin \frac{1}{2}$ -scaled child ellipsoids \Rightarrow "outside"
 - Reach leaf $u \Rightarrow$ "inside"

Analysis

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Total Query time: $O(\log \frac{1}{\varepsilon})$

- Out-degree: O(1) (By expansion-containment)
- Query time per level: O(1)
- Number of levels: $O(\log \frac{1}{\varepsilon})$ (From ε to O(1))

• Total storage: $O(1/\varepsilon^{(d-1)/2})$

- Economical cap cover [Arya et al. 2016]: Number of Macbeath regions needed to cover K_δ is O(1/δ^{(d-1)/2})
- Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
- Geometric progression shows that leaf level dominates

Analysis

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry

APM Queries Data Structure Analysis

Conclusions

Total Query time: $O(\log \frac{1}{\varepsilon})$

- Out-degree: O(1) (By expansion-containment)
- Query time per level: O(1)
- Number of levels: $O(\log \frac{1}{\varepsilon})$ (From ε to O(1))
- Total storage: $O(1/\varepsilon^{(d-1)/2})$
 - Economical cap cover [Arya et al. 2016]: Number of Macbeath regions needed to cover K_δ is O(1/δ^{(d-1)/2})
 - Storage for bottom level: $O(1/\varepsilon^{(d-1)/2})$
 - Geometric progression shows that leaf level dominates

Polytope Approximation and Nearest-Neighbor Searching

Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry APM Queries

Data Structure Analysis

Conclusions

Lifting and Voronoi Diagrams

Lift the points of P to Ψ , take the upper envelope of the tangent hyperplanes, and project the skeleton back onto the plane. The result is the Voronoi diagram of P.

Intuition: Improvements to APM queries leads to improvements in ANN queries

Concluding Remarks

- Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry
- APM Queries Data Structure Analysis
- Conclusions

- Optimal solution to ε -APM queries:
 - Query time: $O(\log \frac{1}{\varepsilon})$
 - Storage: $O(1/\varepsilon^{(d-1)/2})$
 - Many applications!
- Still, several problems remain open:
 - Some polytopes can be approximated by much fewer than $O(1/\varepsilon^{(d-1)/2})$ elements. Instance-optimal approximation?
 - Generalizations to other nearest-neighbor problems: Bregman divergence? kth-nearest neighbor? Mahalanobis distance?

Concluding Remarks

- Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry
- APM Queries Data Structure Analysis

Conclusions

- Optimal solution to ε -APM queries:
 - Query time: $O(\log \frac{1}{\varepsilon})$
 - Storage: $O(1/\varepsilon^{(d-1)/2})$
 - Many applications!
- Still, several problems remain open:
 - Some polytopes can be approximated by much fewer than O(1/ε^{(d-1)/2}) elements. Instance-optimal approximation?
 - Generalizations to other nearest-neighbor problems: Bregman divergence? kth-nearest neighbor? Mahalanobis distance?

Thank you for your attention!

Bibliography

- Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry
- APM Queries Data Structure Analysis

Conclusions

- S. Arya, G. D. da Fonseca, and D. M. Mount, Approximate polytope membership queries, *Proc. 43rd Annu. ACM Sympos. Theory Comput.*, 2011, 579–586.
- S. Arya, G. D. da Fonseca, and D. M. Mount, Polytope approximation and the Mahler volume, *Proc. 23rd Annu.* ACM-SIAM Sympos. Discrete Algorithms, 2012, 29–42.
- S. Arya, G. D. da Fonseca, and D. M. Mount, On the combinatorial complexity of approximating polytopes, *Proc.* 32nd Internat. Sympos. Comput. Geom., 2016, 11:1–11:15.
- S. Arya, G. D. da Fonseca, and D. M. Mount, Near-optimal ε-kernel construction and related problems, Proc. 33rd Internat. Sympos. Comput. Geom., 2017, 10:110:15.
- S. Arya, G. D. da Fonseca, and D. M. Mount, Approximate Convex Intersection Detection with Applications to Width and Minkowski Sums, *Proc. 26th Annu. European Sympos. Algorithms*, 2018, (to appear).
- J. L. Bentley, M. G. Faust, and F. P. Preparata, Approximation algorithms for convex hulls, *Commun. ACM*, 25, 1982, 64–68.
- E. M. Bronshteyn and L. D. Ivanov, The approximation of convex sets by polyhedra, *Siberian Math. J.*, 16, 1976, 852–853.
- B. Chazelle and J. Matoušek, On Linear-Time Deterministic Algorithms for Optimization Problems in Fixed Dimension, J. ACM, 21, 1996, 579–597.
- D. P. Dobkin and D. G. Kirkpatrick, Fast detection of polyhedral intersection, *Theoret. Comput. Sci.*, 27, 1983, 241–253.

Bibliography

- Preliminaries Introduction Convex Approximations Canonical Form Quadtree-based Gold Standard New Approach Our Results Intuition Metric Spaces Delone Sets Macheath Regions Hilbert Geometry
- APM Queries Data Structure Analysis

Conclusions

- D. P. Dobkin and D. G. Kirkpatrick, Determining the separation of preprocessed polyhedra—a unified approach, Proc. 17th ICALP, 400–413, LNCS 443 Springer, 1990.
 - R. M. Dudley, Metric entropy of some classes of sets with differentiable boundaries, Approx. Theory, 10, 1974, 227–236.
 - F. John, Extremum problems with inequalities as subsidiary conditions, *Studs. and Essays Pres. to R. Courant on his 60th Birthday*, 1948, 187–204.
 - G. Ewald, D. G. Larman, and C. A. Rogers, The directions of the line segments and of the *r*-dimensional balls on the boundary of a convex body in Euclidean space. *Mathematika*, 17, 1970, 1–20.
 - S. Har-Peled, A replacement for Voronoi diagrams of near linear size, Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci., 2001, 94–103.
 - F. John, Extremum problems with inequalities as subsidiary conditions, *Studies and Essays Presented to R. Courant on his 60th Birthday*, 1948, 187–204.
 - A. M. Macbeath, A theorem on non-homogeneous lattices, Annals of Mathematics, 54, 1952, 431-438.
 - J. Matoušek, Reporting points in halfspaces, Comput. Geom. Theory Appl., 2, 1992, 169-186.