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Geometric Queries with Convex Bodies

Preprocess a geometric set to answer queries efficiently

Focus on convex bodies: closed, bounded convex sets:

Convex hull of a set of n points in Rd

Intersection of a set of n closed halfspaces in Rd (within an enclosure)

Sample queries:

Membership/Containment: q ∈ P?, Q ⊆ P?

Intersection: Q ∩ P 6= ∅?
Extrema: Ray shooting, directional extrema (linear-programming queries)

Distance: Directional width, longest parallel segment, separation distance

Assumptions

Bodies reside in Rd , where d is a constant. Bodies are full dimensional.

Euclidean distance
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Geometric Queries with Convex Bodies

Gold Standard for exact queries: O(n) space and O(log n) query time

Good exact solutions exist in R2 and R3, but not in higher dimensions:

The worst-case combinatorial complexity grows as O(nb
d
2 c)

Point membership, halfspace emptiness, ray shooting:

R2,R3: O(n) space, O(log n) query time

Rd : O(n) space, Õ(n1− 2
d ) query time [Matoušek 92]

Intersection detection of preprocessed convex polytopes:

R2: O(n) space, O(log n) query time [Dobkin and Kirkpatrick 83]

R3: O(n) space, O(log2 n) query time [Dobkin and Kirkpatrick 90]
O(n) space, O(log n) query time [Barba and Langerman 15]

Rd : O(log n) query time but space O(Nb
d
2 c)

where N = total combinatorial complexity [Barba and Langerman 15]
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Approximating Convex Bodies

Given a convex body K , and ε > 0:

Inner ε-approximation: Any set K−ε ⊆ K within Hausdorff distance ε · diam(K ) of K

Outer ε-approximation: Any set K+
ε ⊇ K within Hausdorff distance ε · diam(K ) of K

The representation often suggests which. Let P be point set, and H a set of halfspaces

K = conv(P): Inner approximation K−ε = conv(P ′) for some P ′ ⊆ P

K =
⋂

(H): Outer approximation K+
ε =

⋂
(H′), for some H′ ⊆ H

Many queries are equivalent through point-hyperplane duality

Most results can be adapted to any combination inner/outer, point/halfspace
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Approximate Geometric Queries

ε-Approximate Query

An answer is valid if it is consistent with any ε-approximation to K

It is often useful to have a directionally sensitive notion of approximation

Given a vector v , define widthv (K ) to be the minimum distance between two
hyperplanes orthogonal to v that enclose K .

Width-sensitive (outer) ε-approximation: Any set K+
ε ⊇ K such that

widthv (K+) ≤ (1 + ε) · widthv (K ), for all v .

Width-Sensitive Approximation

An answer is valid if it is consistent with any width-sensitive ε-approximation to K
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Preconditioning - Canonical Form

γ-Canonical Form

K is nested between two origin-centered balls of radii γ/2 and 1/2

K

O

1
2

γ
2

Can convert to 1
d -canonical form in O(n) time — John’s Theorem + fast minimum

enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]

Since diameter ≤ 1, can use absolute error of ε

Uniform approximation to TK induces a width-sensitive approximation to K
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γ-Canonical Form

K is nested between two origin-centered balls of radii γ/2 and 1/2
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Since diameter ≤ 1, can use absolute error of ε

Uniform approximation to TK induces a width-sensitive approximation to K



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions
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Preconditioning - Canonical Form

γ-Canonical Form

K is nested between two origin-centered balls of radii γ/2 and 1/2

K+
ε

K

(TK)+ε
TK

ε

K

O

1
2

γ
2

T−1

Can convert to 1
d -canonical form in O(n) time — John’s Theorem + fast minimum

enclosing/enclosed ellipsoid [Chazelle and Matoušek 1996]

Since diameter ≤ 1, can use absolute error of ε

Uniform approximation to TK induces a width-sensitive approximation to K
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First Stab - Quadtree-based Approximation

Query: ε-Approximate Polytope Membership (ε-APM)

Preprocessing: Build a quadtree, subdividing each
node that cannot be resolved as being inside or outside

Stop at diameter ε

Query: Find the leaf node containing q and return its
label

Performance:

Query time: O(log 1
ε ) — Quadtree descent

Storage: O(1/εd−1) — No. of leaves ←− independent of n

K
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Updating the Gold Standard

(Dudley 1974), (Bronshteyn and Ivanov 1976)

A convex body of unit diameter can be inner
(outer) ε-approximated by a polytope with

O(1/ε
d−1

2 ) vertices (facets)

Transform K into canonical form

B ← ball of radius 2

N ←
√
ε-net on B

N ′ ← closest points on K to each point of N

K−ε ← conv(N ′)

K+
ε ← intersection of tangent halfspaces

K
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Updating the Gold Standard

Worst-Case Optimality

Any inner (outer) ε-approximation of a Euclidean

unit ball requires Ω(1/ε
d−1

2 ) vertices (facets)

Consider a unit ball B and it ε-expansion B+

Any approximating facet cannot extend
beyond B+

Extension beyond distance
√

3ε goes too far

Facet normals must be O(
√
ε)-dense

Need Ω(( 1√
ε

)d−1) = Ω(1/ε
d−1

2 ) facets

B
1
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1

0 < ε < 1 ε

BB+
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√
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√
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√
3ε)2

=
√
1 + 3ε

>
√
1 + 2ε + ε2

> 1 + ε

BB+



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Updating the Gold Standard

Worst-Case Optimality

Any inner (outer) ε-approximation of a Euclidean

unit ball requires Ω(1/ε
d−1

2 ) vertices (facets)

Consider a unit ball B and it ε-expansion B+

Any approximating facet cannot extend
beyond B+

Extension beyond distance
√

3ε goes too far

Facet normals must be O(
√
ε)-dense

Need Ω(( 1√
ε

)d−1) = Ω(1/ε
d−1

2 ) facets

0 < ε < 1 <
√
3ε

BB+

O(
√
ε)



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Updating the Gold Standard

Worst-Case Optimality

Any inner (outer) ε-approximation of a Euclidean

unit ball requires Ω(1/ε
d−1

2 ) vertices (facets)

Consider a unit ball B and it ε-expansion B+

Any approximating facet cannot extend
beyond B+

Extension beyond distance
√

3ε goes too far

Facet normals must be O(
√
ε)-dense

Need Ω(( 1√
ε

)d−1) = Ω(1/ε
d−1

2 ) facets

0 < ε < 1 <
√
3ε

BB+

O(
√
ε)



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Achieving the Gold Standard

An approach to convex approximation that is space and time optimal:

ε-Approximate Polytope Membership (ε-APM):

Query time: O(log 1
ε )

Storage: O(1/ε
d−1

2 )

Numerous applications:

Best known space-time tradeoffs for ε-approximate Euclidean nearest neighbor
searching (Arya et al. 2011, Arya, et al. 2012)

Near worst-case optimal computation of ε-kernels and approximating the diameter of a
convex body (Arya et al. 2017)

Best known algorithms for approximating bichromatic closest pairs and bottleneck
Euclidean minimum spanning trees (Arya et al. 2017)

Best known algorithm for computing an ε-approximation to the width of a convex
body (Arya et al. 2018)
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Intuition - Hierarchy of Covers by Balls

Hierarchy of covering balls:

Preprocessing: Cover K by balls of diameter
1, 1

2 ,
1
4 , . . . , ε

DAG Structure: Each ball stores pointers to
overlapping balls at next level

Query: Find any ball at each level that contains q. If
none ⇒ “outside”.

Need only check O(1) balls that overlap previous

Analysis:

Query: O(log 1
ε ) (Log depth, constant degree)

Storage: O(1/εd) (Number of leaves)
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Metric Space Perspective

The balls yield hierarchical covering of K by balls, but are their more economical solutions?

Yes! But first we need to recall a bit about . . .

Metric Space: A set X and distance measure f : X× X→ R that satisfies:

Nonnegativity: f (x , y) ≥ 0, and f (x , y) = 0 if and only if x = y

Symmetry: f (x , y) = f (y , x)

Triangle Inequality: f (x , z) ≤ f (x , y) + f (y , z).
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Delone Sets

A subset X ⊆ X is an:

ε-packing: If the balls of radius ε/2 centered at every
point of X are disjoint

ε-covering: If every point of X is within distance ε of
some point of X

(εp, εc)-Delone Set: If X is an εp-packing and an
εc -covering

ε-neta: If it is an (ε, ε)-Delone set

We seek economical Delone sets for K , that fit within K ’s
δ-expansion for δ = 1, 1

2 ,
1
4 , . . . , ε

aWarning: Different from ε-nets for range spaces!
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Macbeath Regions

Euclidean balls are not sensitive to K ’s shape

Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K , x ∈ K , and λ > 0:

Mλ
K (x) = x + λ((K − x) ∩ (x − K ))

MK (x) = M1
K (x): Intersection of K and K ’s reflection

around x

Mλ
K (x): Scaling of MK (x) by factor λ

Will omit K when clear

K

x



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Macbeath Regions

Euclidean balls are not sensitive to K ’s shape

Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K , x ∈ K , and λ > 0:

Mλ
K (x) = x + λ((K − x) ∩ (x − K ))

MK (x) = M1
K (x): Intersection of K and K ’s reflection

around x

Mλ
K (x): Scaling of MK (x) by factor λ

Will omit K when clear

K

x



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Macbeath Regions

Euclidean balls are not sensitive to K ’s shape

Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K , x ∈ K , and λ > 0:

Mλ
K (x) = x + λ((K − x) ∩ (x − K ))

MK (x) = M1
K (x): Intersection of K and K ’s reflection

around x

Mλ
K (x): Scaling of MK (x) by factor λ

Will omit K when clear

K

x

2x− K



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Macbeath Regions

Euclidean balls are not sensitive to K ’s shape

Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K , x ∈ K , and λ > 0:

Mλ
K (x) = x + λ((K − x) ∩ (x − K ))

MK (x) = M1
K (x): Intersection of K and K ’s reflection

around x

Mλ
K (x): Scaling of MK (x) by factor λ

Will omit K when clear

K

x

2x− K

MK(x)



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Macbeath Regions

Euclidean balls are not sensitive to K ’s shape

Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K , x ∈ K , and λ > 0:

Mλ
K (x) = x + λ((K − x) ∩ (x − K ))

MK (x) = M1
K (x): Intersection of K and K ’s reflection

around x

Mλ
K (x): Scaling of MK (x) by factor λ

Will omit K when clear

K

x

2x− K

MK(x)

M
1/2
K (x)



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Macbeath Regions

Euclidean balls are not sensitive to K ’s shape

Want metric balls that conform locally

Macbeath Region [Macbeath (1952)]

Given convex body K , x ∈ K , and λ > 0:

Mλ
K (x) = x + λ((K − x) ∩ (x − K ))

MK (x) = M1
K (x): Intersection of K and K ’s reflection

around x

Mλ
K (x): Scaling of MK (x) by factor λ

Will omit K when clear

K

x

2x− K

MK(x)

M
1/2
K (x)



Preliminaries

Introduction

Convex
Approximations

Canonical Form

Quadtree-based

Gold Standard

New Approach

Our Results

Intuition

Metric Spaces

Delone Sets

Macbeath
Regions

Hilbert
Geometry

APM Queries

Data Structure

Analysis

Conclusions

Properties of Macbeath Regions

Properties:

Symmetry: Mλ(x) is convex and centrally symmetric
about x

Expansion-Containment: [Ewald et al (1970)]
If for λ < 1, Mλ(x) and Mλ(y) intersect, then

Mλ(y) ⊆ Mcλ(x), where c =
3 + λ

1− λ
.

Upshot: By expansion-containment, shrunken Macbeath
regions behave “like” Euclidean balls, but they conform
locally to K ’s boundary

K

x

2x− K

MK(x)

M
1/2
K (x)
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Macbeath Ellipsoids

Mλ(x)

x

Macbeath regions can be combinatorially complex.
Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in Rd , there
exist ellipsoids E1,E2 such that E1 ⊆ M ⊆ E2 and E2 is
a
√
d-scaling of E1

Macbeath ellipsoid:

E (x): maximum volume ellipsoid in M(x)

Eλ(x): scaling by factor λ

Eλ(x) ⊆ Mλ(x) ⊆ Eλ
√
d(x)
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Macbeath Ellipsoids

Mλ(x)

Eλ(x)

Eλ
√
d(x)

x

Macbeath regions can be combinatorially complex.
Want a coarse approximation of low-complexity.

John ellipsoid [John (1948)]

Given a centrally symmetric convex body M in Rd , there
exist ellipsoids E1,E2 such that E1 ⊆ M ⊆ E2 and E2 is
a
√
d-scaling of E1

Macbeath ellipsoid:

E (x): maximum volume ellipsoid in M(x)

Eλ(x): scaling by factor λ

Eλ(x) ⊆ Mλ(x) ⊆ Eλ
√
d(x)
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Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids:

For δ > 0, let Kδ be an expansion of K by distance δ

Let λ0 be a small constant (1/(4
√
d + 1))

Let Xδ ⊂ K be a maximal set of points such that
Eλ0 (x) are disjoint for all x ∈ Xδ

Exp-containment ⇒
⋃

x∈Xδ
E

1
2 (x) cover K

Macbeath-Based Delone Set

Xδ is essentially a ( 1
2 , 2λ0)-Delone set for K

K
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Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids:

For δ > 0, let Kδ be an expansion of K by distance δ

Let λ0 be a small constant (1/(4
√
d + 1))

Let Xδ ⊂ K be a maximal set of points such that
Eλ0 (x) are disjoint for all x ∈ Xδ

Exp-containment ⇒
⋃

x∈Xδ
E

1
2 (x) cover K

Macbeath-Based Delone Set

Xδ is essentially a ( 1
2 , 2λ0)-Delone set for K

K
Kδ

δ
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Macbeath Ellipsoids and Delone Sets

Delone sets from Macbeath ellipsoids:

For δ > 0, let Kδ be an expansion of K by distance δ

Let λ0 be a small constant (1/(4
√
d + 1))

Let Xδ ⊂ K be a maximal set of points such that
Eλ0 (x) are disjoint for all x ∈ Xδ

Exp-containment ⇒
⋃

x∈Xδ
E

1
2 (x) cover K

Macbeath-Based Delone Set

Xδ is essentially a ( 1
2 , 2λ0)-Delone set for K

x

Eλ0(x)

(Ellipsoids not drawn to scale)
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Macbeath Regions and the Hilbert Geometry

Delone sets are defined in a metric space. What’s the
metric?

Hilbert Metric: Given x , y ∈ K , let x ′ and y ′ be the
intersection of ←→xy with ∂K . Define

fK (x , y) =
1

2
ln

(
‖x ′ − y‖
‖x ′ − x‖

‖x − y ′‖
‖y − y ′‖

)
Ball: BH(x , δ) = {y ∈ K : fK (x , y) ≤ δ}

Macbeath Regions and Hilbert Balls

For all x ∈ K and 0 ≤ λ < 1:

BH

(
x , ln (1 + λ)

)
⊆ Mλ(x) ⊆ BH

(
x , ln

1

1− λ

)

K

x
y
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Macbeath Regions and the Hilbert Geometry

Delone sets are defined in a metric space. What’s the
metric?

Hilbert Metric: Given x , y ∈ K , let x ′ and y ′ be the
intersection of ←→xy with ∂K . Define

fK (x , y) =
1

2
ln

(
‖x ′ − y‖
‖x ′ − x‖

‖x − y ′‖
‖y − y ′‖

)
Ball: BH(x , δ) = {y ∈ K : fK (x , y) ≤ δ}

Macbeath Regions and Hilbert Balls

For all x ∈ K and 0 ≤ λ < 1:

BH

(
x , ln (1 + λ)

)
⊆ Mλ(x) ⊆ BH

(
x , ln

1

1− λ

)

K

x
y

x′

y′
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(
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(
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Delone sets are defined in a metric space. What’s the
metric?

Hilbert Metric: Given x , y ∈ K , let x ′ and y ′ be the
intersection of ←→xy with ∂K . Define

fK (x , y) =
1

2
ln

(
‖x ′ − y‖
‖x ′ − x‖

‖x − y ′‖
‖y − y ′‖

)
Ball: BH(x , δ) = {y ∈ K : fK (x , y) ≤ δ}

Macbeath Regions and Hilbert Balls

For all x ∈ K and 0 ≤ λ < 1:

BH

(
x , ln (1 + λ)

)
⊆ Mλ(x) ⊆ BH

(
x , ln

1

1− λ

)
x

Mλ(x)

BH(x,
1

ln 1−λ)

BH(x, ln(1 + λ))
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Approximate Polytope Membership (APM) Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

K
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Approximate Polytope Membership (APM) Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 1
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Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 1
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Approximate Polytope Membership (APM) Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 2
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Approximate Polytope Membership (APM) Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 2
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Approximate Polytope Membership (APM) Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 3
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Approximate Polytope Membership (APM) Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 3
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Approximate Polytope Membership (APM) Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 4
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Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 4
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Approximate Polytope Membership (APM) Data Structure

Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 1
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Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 2
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Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”
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Preprocessing:

Input: K and ε > 0

For i = 0, 1, . . .

δi ← 2iε
Xi ← Macbeath Delone set for Kδi
Create a node at level i for each x ∈ Xi

Create child links to nodes at level i − 1 whose
1
2 -scale Macbeath ellipsoids overlap

Stop when |E`| = 1 (at δ` = O(1))

Query Processing:

Descend the DAG from root (level `) until:

q /∈ 1
2 -scaled child ellipsoids ⇒ “outside”

Reach leaf u ⇒ “inside”

level 4
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Analysis

Total Query time: O(log 1
ε )

Out-degree: O(1) (By expansion-containment)

Query time per level: O(1)

Number of levels: O(log 1
ε ) (From ε to O(1))

Total storage: O(1/ε(d−1)/2)

Economical cap cover [Arya et al. 2016]: Number of Macbeath regions needed to
cover Kδ is O(1/δ(d−1)/2)

Storage for bottom level: O(1/ε(d−1)/2)

Geometric progression shows that leaf level dominates
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Analysis

Total Query time: O(log 1
ε )

Out-degree: O(1) (By expansion-containment)

Query time per level: O(1)

Number of levels: O(log 1
ε ) (From ε to O(1))

Total storage: O(1/ε(d−1)/2)

Economical cap cover [Arya et al. 2016]: Number of Macbeath regions needed to
cover Kδ is O(1/δ(d−1)/2)

Storage for bottom level: O(1/ε(d−1)/2)
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Polytope Approximation and Nearest-Neighbor Searching

Lifting and Voronoi Diagrams

Lift the points of P to Ψ, take the upper envelope of
the tangent hyperplanes, and project the skeleton back
onto the plane. The result is the Voronoi diagram of
P.

Intuition: Improvements to APM queries leads to
improvements in ANN queries
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Concluding Remarks

Optimal solution to ε-APM queries:

Query time: O(log 1
ε )

Storage: O(1/ε(d−1)/2)

Many applications!

Still, several problems remain open:

Some polytopes can be approximated by much fewer than O(1/ε(d−1)/2)
elements. Instance-optimal approximation?

Generalizations to other nearest-neighbor problems: Bregman divergence?
kth-nearest neighbor? Mahalanobis distance?

Thank you for your attention!
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Some polytopes can be approximated by much fewer than O(1/ε(d−1)/2)
elements. Instance-optimal approximation?

Generalizations to other nearest-neighbor problems: Bregman divergence?
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Thank you for your attention!
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