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Euclidean Minimum Spanning Tree

Euclidean MST

Given a set P of points in space, compute the
minimum spanning tree, where the edge weights are
the distances

Assumptions:

Points in Rd , where d is constant

Euclidean distance (generalizes to Lp distance)
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Exact vs. Approximate MST

Exact in Rd :

Naive: O(n2) — Run Kruskal on complete graph

Geometry helps, but not by much:

Yao (1982) Õ(n2− 1

2d )

Agarwal et al. (1991) Õ(n2− 4
d )

Better performance through approximation?

Approximate MST

Return a spanning tree of weight at most
(1 + ε) · wt(MST(P)).
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Prior Work

Exact in Rd : Agarwal et al. (1991): Õ(n2− 4
d )

ε-Approximate in Rd : (Constant d . Ignoring log factors)

Vaidya (1991) Õ(n/εd) quadtrees

Callahan and Kosaraju (1995) Õ(n/εd/2) WSPDs

Arya and Chan (2014) Õ(n/εd/3) DVDs

Arya, Fonseca, Mount (2017) Õ(n/εd/4) Macbeath regions

Chan (2017) Õ(n/εd/4) Polynomial method

Weight approximation in sublinear time: Chazelle et al. (2005), Czumaj et al. (2005),
Czumaj and Sohler (2009)
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Talk Overview

Preliminaries: WSPDs, MSTs, and Fast Lower Bounds

Theory: ε-approximate MSTs in Õ(n/ε2) time

Practice: A more practical approach and implementation
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Preliminaries - Well-Separated Pairs

WSPDs - Basic Facts: Let P ⊂ Rd , |P| = n

A and B are s-well separated if they can be enclosed
within balls of radius r separated by distance at least s r

An s-WSPD of P is a set of s-well separated pairs
{{Ai ,Bi}}ki=1 that covers all the pairs of P

Callahan and Kosaraju (1995): Can construct an s-WSPD
of size k = O((s

√
d)dn) in time O(k + n log n)

≥ sr

r

r

A

B
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Well-Separated Pairs

WSPDs - More Facts:

Each well-separated pair is represented by a pair of nodes
{u, v} in a quadtree

Let Pu and Pv denote the associated point sets

Each well-separated pair also stores a pair of representative
points, pu ∈ Pu and pv ∈ Pv
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{u, v} in a quadtree

Let Pu and Pv denote the associated point sets
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WSPDs - More Facts:

Each well-separated pair is represented by a pair of nodes
{u, v} in a quadtree

Let Pu and Pv denote the associated point sets

Each well-separated pair also stores a pair of representative
points, pu ∈ Pu and pv ∈ Pv

pv
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Useful Observations (Callahan and Kosaraju (1995))

A 2-WSPD of size O(n) can be constructed in time
O(n log n)

Each pair of a 2-WSPD contributes at most one edge
to the MST

Given a 2-WSPD for P, form a graph G from the
closest pair from each (Ai ,Bi )

|G | = O(n)

MST(G )⇒ EMST(P)

ε-approximate closest pairs yield an ε-MST

Ai

Bi
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Simple WSPD-Based Algorithm

ε-Approximate MST Algorithm:

Compute an s-WSPD, for s = 4(2 + ε)/ε

For each WSP {u, v}, add {pu, pv} to G

Compute MST(G ) and return

Running time:

Dominated by MST time: O((n/εd) log(n/ε))
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Correctness of the Simple WSPD-Based Algorithm

Correctness:

Fact: G is a (1 + ε)-spanner for P ⇔
Each p, q ∈ P joined by a path of length ≤ (1 + ε)‖pq‖.
Replace each edge of EMST(P) with its spanner path
Total weight increases by at most (1 + ε)

Result G ′ spans P and has weight ≤ (1 + ε)EMST(P)

The weight of MST(G ) can be no larger

EMST(P)

G
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EMST(P)
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Speeding This Up

(1/ε)-WSPD has too many pairs (O(n/εd))

Build a 2-WSPD ⇒ Only O(n) pairs

Be smarter about computing ε-approximate closest pairs?
⇒ Õ(n/εd/2) [CK95], Õ(n/εd/3) [AC14], Õ(n/εd/4) [Ch17, AFM17] ← tough!

Use lower bounds on MST weight more judiciously ← our approach
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Fast MST Lower Bound

Lemma [Czumaj et al. 2005]

Consider a grid of side length s in Rd . Let m be the
number of grid boxes containing at least one point of P.
Then there is a constant c (depending on d) such that
wt(MST(P)) ≥ s m/c .

Proof:

Color the grid with 2d colors. Boxes of the same color
are separated by distance ≥ s

Some color class has at least m/2d boxes

The cost of connecting these boxes is Ω(s m)

s
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Talk Overview

Preliminaries: WSPDs, MSTs, and Fast Lower Bounds

Theory: ε-approximate MSTs in Õ(n/ε2) time (joint with Sunil Arya)

Practice: A more practical approach and implementation
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Talk Overview

Preliminaries: WSPDs, MSTs, and Fast Lower Bounds

Theory: ε-approximate MSTs in Õ(n/ε2) time (joint with Sunil Arya)

Simple, deterministic, using standard data structures

Novel amortized cost analysis

The 1/ε2 factor is independent of dimension

Practice: A more practical approach and implementation
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Simple (Slow) Algorithm

Compute a 2-WSPD for P

Each box stores a representative point

For each WSP (Ai ,Bi ):

Let s be the box size. Subdivide Ai and Bi until
the box diameter ≤ εs
(pi , qi )← closest pair of box representatives

G ← closest pairs. Return MST(G )

Slow! O(n/(εd)2) = O(n/ε2d).

Worst case arises when pairs have many boxes.

But, this only occurs when MST cost is high.

Ai

Bi
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A Smarter/Sloppier Algorithm

Compute a 2-WSPD for P

Each box stores a representative point

For each (Ai ,Bi ) approximate the closest pair:

Let s be the box size. Subdivide Ai and Bi until
either:

Box diameter ≤ ε s — or —

The number of nonempty boxes ≥ c/ε
(for some constant c)

(pi , qi )← closest pair of box representatives

G ← closest pairs. Return MST(G )

Ai

Bi
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Approximation Analysis (First Attempt)

Case 1: Box diameters ≤ εs:

Absolute error ≤ 2εs . ε · dist(Ai ,Bi )

Relative error . ε

Case 2: Number of nonempty boxes ≥ c/ε:

Let δ be the diameters of the boxes

Absolute error . δ

By Lower-Bound Lemma, weight of MST
restricted to Ai or Bi is ≥ δ(c/ε)/c = δ/ε

Relative error is . ε (amortized over the box)

. . . hey, aren’t you multiply charging?
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Ai

Bi≤ εs
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s≥ s
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Approximation Analysis (Finer Points)

We charge the same MST edge multiple times:

Multiple WSPs share the same quadtree box

— each box is in O
(√

d
)d

= O(1) WSPs
→ increase c by this constant

Multiple tree levels charge the same edge
→ further increase c by tree height
— × O

(
log n

ε

)
[Arora (1998)]

Reducing the log factor
— A more refined analysis reduces the log factor to
O
(

log 1
ε

)

Ai
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Execution Time

Build the quadtree and WSPD: O(n log n)

Find the approximate closest pair for each WSP:

O(n) WSPs

O( 1
ε log 1

ε ) boxes per WSP

O(( 1
ε log 1

ε )2) representative pairs per WSP

Compute the MST of G : O(n log n)

Total time: O
(
n log n + ( 1

ε log 1
ε )2n

)
= Õ(n/ε2)
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Talk Overview

Preliminaries: WSPDs, MSTs, and Fast Lower Bounds

Theory: ε-approximate MSTs in Õ(n/ε2) time

Practice: A more practical approach and implementation
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Practical Solutions

Practical solutions: (for exact MSTs)

Bentley and Friedman (1978): kd-trees + Prim

Narasimhan and Zachariasen (2001): WSPDs + Kruskal: GeoMST, GeoMST2

Chatterjee, Connor, and Kumar (2010): WSPDs + Kruskal: GeoFilterKruskal

March, Ram, Gray (2010): WSPD + Bor̊uvka

Here: Adding approximation (Joint with Phong Dinh and Jerry Tan)
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GeoMST (Narasimhan and Zachariasen (2001))

GeoMST(P):

Ψ← a 2-WSPD for P

For each (Ai ,Bi ) ∈ Ψ, compute the bichromatic
closest pair, BCP(Ai ,Bi )

Run Kruskal on the resulting edges

BCP(Ai ,Bi ):

If |Ai | = |Bi | = 1 return this pair

Else, split the larger cell (kd-tree children) A′i , A
′′
i

Compute δ′ ← BCP(A′i ,Bi ) (closer child)

If (cell-dist(A′′i ,Bi ) < δ′/(1 + ε)) δ′′ ← BCP(A′i ,Bi )

return min(δ′, δ′′)
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The Problem with WSPDs

Practical Limitation — Too many WSPs in higher dimensions

Uniform Gaussian Clusters Fractal
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Practical Limitation — Too many WSPs in higher dimensions
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GeoMST2 (Narasimhan and Zachariasen (2001))

Want a WSP-based approach, but without the WSPD!

Build WSPs only as needed

Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe:

BCP(Ai ,Bi ) ≤ distance between next WSP

No postprocessing. The safe edges form the MST
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GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe:

BCP(Ai ,Bi ) ≤ distance between next WSP

No postprocessing. The safe edges form the MST
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Component-First

A further refinement to GeoMST2

Key modification: Process pairs (Ai ,Bi ) even if they are
not well-separated

If (all of Ai in one component and all of Bi in one
component) then

If (same component) then discard the pair
(Ai ,Bi )

else compute BCP(Ai ,Bi )

Ai

Bi



Introduction

Background

Approximation

Prior Work

Preliminaries

WSPD+MST

Lower Bound

In Theory

Simple+Slow

Smart+Sloppy

Analysis

In Practice

Background

GeoMST

GeoMST2

Component-First

Wrap-Up

Component-First

A further refinement to GeoMST2

Key modification: Process pairs (Ai ,Bi ) even if they are
not well-separated

If (all of Ai in one component and all of Bi in one
component) then

If (same component) then discard the pair
(Ai ,Bi )

else compute BCP(Ai ,Bi )

Ai

Bi



Introduction

Background

Approximation

Prior Work

Preliminaries

WSPD+MST

Lower Bound

In Theory

Simple+Slow

Smart+Sloppy

Analysis

In Practice

Background

GeoMST

GeoMST2

Component-First

Wrap-Up

Component-First

A further refinement to GeoMST2

Key modification: Process pairs (Ai ,Bi ) even if they are
not well-separated

If (all of Ai in one component and all of Bi in one
component) then

If (same component) then discard the pair
(Ai ,Bi )

else compute BCP(Ai ,Bi )

Ai

Bi



Introduction

Background

Approximation

Prior Work

Preliminaries

WSPD+MST

Lower Bound

In Theory

Simple+Slow

Smart+Sloppy

Analysis

In Practice

Background

GeoMST

GeoMST2

Component-First

Wrap-Up

Component-First

A further refinement to GeoMST2

Key modification: Process pairs (Ai ,Bi ) even if they are
not well-separated

If (all of Ai in one component and all of Bi in one
component) then

If (same component) then discard the pair
(Ai ,Bi )

else compute BCP(Ai ,Bi )

Ai

Bi



Introduction

Background

Approximation

Prior Work

Preliminaries

WSPD+MST

Lower Bound

In Theory

Simple+Slow

Smart+Sloppy

Analysis

In Practice

Background

GeoMST

GeoMST2

Component-First

Wrap-Up

Component-First

A further refinement to GeoMST2

Key modification: Process pairs (Ai ,Bi ) even if they are
not well-separated

If (all of Ai in one component and all of Bi in one
component) then

If (same component) then discard the pair
(Ai ,Bi )

else compute BCP(Ai ,Bi )

Ai

Bi

Ai

Bi



Introduction

Background

Approximation

Prior Work

Preliminaries

WSPD+MST

Lower Bound

In Theory

Simple+Slow

Smart+Sloppy

Analysis

In Practice

Background

GeoMST

GeoMST2

Component-First

Wrap-Up

Component-First

A further refinement to GeoMST2
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GeoMST2 and Component-First Performance

Uniform Gaussian Clusters Fractal

These algorithms are quite practical, and further improvements may be possible
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Concluding Remarks

Summary:

ε-approximate EMSTs in Rd in Õ(n/ε2) time

Simple, deterministic algorithm (quadtrees, well-separated pairs)

Not really practical, but ideas can be applied to improve implementations

Caveats:

EMST minimizes the bottleneck (max) edge cost — ours does not

Big-O hides factors that grow exponentially with dimension

Further Work:

Approximate minimum bottleneck spanning tree in similar time?

Reduce extraneous factors 1/ε2 → 1/ε? log2(1/ε)→ O(1)?

Further engineering of practical approaches

Thank you for your attention!
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