Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Approximation Algorithms for Geometric Proximity Problems: Part I: Approximating Euclidean MSTs

David M. Mount

Department of Computer Science & Institute for Advanced Computer Studies University of Maryland, College Park

Joint with: Sunil Arya, Phong Dinh, Jerry Tan

HMI Workshop 2018

Euclidean Minimum Spanning Tree

Introduction

- Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Euclidean MST

Given a set P of points in space, compute the minimum spanning tree, where the edge weights are the distances

ssumptions:

Points in \mathbb{R}^d , where d is constant

Euclidean distance (generalizes to L_p distance)

Euclidean Minimum Spanning Tree

Introduction

- Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Euclidean MST

Given a set P of points in space, compute the minimum spanning tree, where the edge weights are the distances

ssumptions:

Points in \mathbb{R}^d , where d is constant

Euclidean distance (generalizes to L_p distance)

Euclidean Minimum Spanning Tree

Introduction

- Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First
- Wrap-Up

Euclidean MST

Given a set P of points in space, compute the minimum spanning tree, where the edge weights are the distances

Assumptions:

- Points in \mathbb{R}^d , where d is constant
- Euclidean distance (generalizes to L_p distance)

Exact vs. Approximate MST

Exact in \mathbb{R}^d :

Introduction

Background Approximation Prior Work

Preliminaries WSPD+MST

Lower Bound

Smart+Sloppy Analysis In Practice

Background GeoMST GeoMST2 Component-First Wrap-Up

In Theory Simple+Slow

- **Naive**: $O(n^2)$ Run Kruskal on complete graph
- Geometry helps, but not by much: Yao (1982) Õ(n^{2-1/2d})
 - Agarwal *et al.* (1991) $\widetilde{O}(n^{2-\frac{4}{d}})$

Better performance through approximation?

\pproximate MST

Return a spanning tree of weight at most $(1 + \varepsilon) \cdot \operatorname{wt}(\mathsf{MST}(P)).$

Exact vs. Approximate MST

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Exact in \mathbb{R}^d :

- Naive: $O(n^2)$ Run Kruskal on complete graph
- Geometry helps, but not by much: Yao (1982) $\widetilde{O}(n^{2-\frac{1}{2^{d}}})$ Agarwal *et al.* (1991) $\widetilde{O}(n^{2-\frac{4}{d}})$

Better performance through approximation?

Approximate MST

Return a spanning tree of weight at most $(1 + \varepsilon) \cdot wt(MST(P)).$

Exact vs. Approximate MST

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Exact in \mathbb{R}^d :

- Naive: $O(n^2)$ Run Kruskal on complete graph
- Geometry helps, but not by much: Yao (1982) $\widetilde{O}(n^{2-\frac{1}{2^{d}}})$ Agarwal *et al.* (1991) $\widetilde{O}(n^{2-\frac{4}{d}})$
- Better performance through approximation?

Approximate MST

Return a spanning tree of weight at most $(1 + \varepsilon) \cdot wt(MST(P)).$

Prior Work

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory Simple+Slow

Smart+Sloppy Analysis In Practice Background

GeoMST GeoMST2 Component-First Wrap-Up

- Exact in ℝ^d: Agarwal *et al.* (1991): Õ(n^{2-4/d})
 ε-Approximate in ℝ^d: (Constant d. Ignoring log factors)
 Vaidya (1991) Õ(n/ε^d) quadtrees
 - Callahan and Kosaraju (1995) $\widetilde{O}(n/\varepsilon^{d/2})$ WSPDsArya and Chan (2014) $\widetilde{O}(n/\varepsilon^{d/3})$ DVDsArya, Fonseca, Mount (2017) $\widetilde{O}(n/\varepsilon^{d/4})$ Macbeath regionsChan (2017) $\widetilde{O}(n/\varepsilon^{d/4})$ Polynomial method
- Weight approximation in sublinear time: Chazelle *et al.* (2005), Czumaj *et al.* (2005), Czumaj and Sohler (2009)

Talk Overview

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Preliminaries: WSPDs, MSTs, and Fast Lower Bounds
- Theory: ε -approximate MSTs in $\widetilde{O}(n/\varepsilon^2)$ time
- Practice: A more practical approach and implementation

Talk Overview

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Preliminaries: WSPDs, MSTs, and Fast Lower Bounds
- Theory: ε -approximate MSTs in $\widetilde{O}(n/\varepsilon^2)$ time
- Practice: A more practical approach and implementation

Preliminaries - Well-Separated Pairs

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

WSPDs - Basic Facts: Let $P \subset \mathbb{R}^d$, |P| = n

- A and B are s-well separated if they can be enclosed within balls of radius r separated by distance at least s r
- An s-WSPD of P is a set of s-well separated pairs {{A_i, B_i}}^k_{i=1} that covers all the pairs of P
- Callahan and Kosaraju (1995): Can construct an *s*-WSPD of size $k = O((s\sqrt{d})^d n)$ in time $O(k + n \log n)$

Preliminaries - Well-Separated Pairs

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

WSPDs - Basic Facts: Let $P \subset \mathbb{R}^d$, |P| = n

- A and B are s-well separated if they can be enclosed within balls of radius r separated by distance at least sr
- An *s*-WSPD of *P* is a set of *s*-well separated pairs {{*A_i*, *B_i*}}^{*k*}_{*i*=1} that covers all the pairs of *P*

Callahan and Kosaraju (1995): Can construct an *s*-WSPD of size $k = O((s\sqrt{d})^d n)$ in time $O(k + n \log n)$

Preliminaries - Well-Separated Pairs

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

WSPDs - Basic Facts: Let $P \subset \mathbb{R}^d$, |P| = n

- A and B are s-well separated if they can be enclosed within balls of radius r separated by distance at least sr
- An *s*-WSPD of *P* is a set of *s*-well separated pairs {{*A_i*, *B_i*}}^{*k*}_{*i*=1} that covers all the pairs of *P*
- Callahan and Kosaraju (1995): Can construct an *s*-WSPD of size $k = O((s\sqrt{d})^d n)$ in time $O(k + n \log n)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

WSPDs - More Facts:

- Each well-separated pair is represented by a pair of nodes {u, v} in a quadtree
- Let P_u and P_v denote the associated point sets
- Each well-separated pair also stores a pair of representative points, $p_u \in P_u$ and $p_v \in P_v$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up WSPDs - More Facts:

- Each well-separated pair is represented by a pair of nodes {u, v} in a quadtree
- Let P_u and P_v denote the associated point sets
- Each well-separated pair also stores a pair of representative points, $p_u \in P_u$ and $p_v \in P_v$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

WSPDs - More Facts:

- Each well-separated pair is represented by a pair of nodes {u, v} in a quadtree
- Let P_u and P_v denote the associated point sets

Each well-separated pair also stores a pair of representative points, $p_u \in P_u$ and $p_v \in P_v$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

WSPDs - More Facts:

- Each well-separated pair is represented by a pair of nodes {u, v} in a quadtree
- Let P_u and P_v denote the associated point sets
- Each well-separated pair also stores a pair of representative points, $p_u \in P_u$ and $p_v \in P_v$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- A 2-WSPD of size O(n) can be constructed in time O(n log n)
- Each pair of a 2-WSPD contributes at most one edge to the MST
- Given a 2-WSPD for *P*, form a graph *G* from the closest pair from each (*A_i*, *B_i*)
 - |G| = O(n)
 - $MST(G) \Rightarrow EMST(P)$
- ε -approximate closest pairs yield an ε -MST

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- A 2-WSPD of size O(n) can be constructed in time O(n log n)
- Each pair of a 2-WSPD contributes at most one edge to the MST
- Given a 2-WSPD for *P*, form a graph *G* from the closest pair from each (*A_i*, *B_i*)
 - |G| = O(n)
 - $\blacksquare \mathsf{MST}(G) \Rightarrow \mathsf{EMST}(P)$
- ε -approximate closest pairs yield an ε -MST

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- A 2-WSPD of size O(n) can be constructed in time O(n log n)
- Each pair of a 2-WSPD contributes at most one edge to the MST
- Given a 2-WSPD for *P*, form a graph *G* from the closest pair from each (*A_i*, *B_i*)
 |*G*| = *O*(*n*)
 - $MST(G) \Rightarrow EMST(P)$
- ε -approximate closest pairs yield an ε -MST

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- A 2-WSPD of size O(n) can be constructed in time O(n log n)
- Each pair of a 2-WSPD contributes at most one edge to the MST
- Given a 2-WSPD for *P*, form a graph *G* from the closest pair from each (*A_i*, *B_i*)
 - |G| = O(n)
 - $MST(G) \Rightarrow EMST(P)$
- ε -approximate closest pairs yield an ε -MST

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- A 2-WSPD of size O(n) can be constructed in time O(n log n)
- Each pair of a 2-WSPD contributes at most one edge to the MST
- Given a 2-WSPD for *P*, form a graph *G* from the closest pair from each (*A_i*, *B_i*)
 - |G| = O(n)
 - $MST(G) \Rightarrow EMST(P)$
- ε -approximate closest pairs yield an ε -MST

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

ɛ-Approximate MST Algorithm:

• Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$

.

• .

•

- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(*G*) and return

Running time:

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

ɛ-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(G) and return

Running time:

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

ɛ-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(*G*) and return

Running time:

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

ɛ-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(*G*) and return

Running time:

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

e-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(*G*) and return

Running time:

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

e-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(*G*) and return

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

ɛ-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(*G*) and return

Running time:

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

e-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(G) and return

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

ɛ-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(G) and return

Running time:

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

ɛ-Approximate MST Algorithm:

- Compute an *s*-WSPD, for $s = 4(2 + \varepsilon)/\varepsilon$
- For each WSP $\{u, v\}$, add $\{p_u, p_v\}$ to G
- Compute MST(G) and return

Running time:

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Correctness:

- Fact: *G* is a $(1 + \varepsilon)$ -spanner for *P* \Leftrightarrow Each *p*, *q* \in *P* joined by a path of length $< (1 + \varepsilon) || p$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most $(1 + \varepsilon)$
- Result G' spans P and has weight $\leq (1 + \varepsilon) \mathsf{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Correctness:

■ Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.

- Replace each edge of EMST(P) with its spanner path Total weight increases by at most $(1 + \varepsilon)$
- Result G' spans P and has weight $\leq (1 + \varepsilon) \text{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Correctness:

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)
- Result G' spans P and has weight $\leq (1 + \varepsilon) \mathsf{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Correctness:

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)

Result G' spans P and has weight $\leq (1 + \varepsilon) \text{EMST}(P)$

■ The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)
- Result G' spans P and has weight $\leq (1 + \varepsilon) \text{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)
- Result G' spans P and has weight $\leq (1 + \varepsilon) \text{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)
- Result G' spans P and has weight $\leq (1 + \varepsilon) \mathsf{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Correctness:

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)

Result G' spans P and has weight $\leq (1 + \varepsilon) \text{EMST}(P)$

■ The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)
- Result G' spans P and has weight $\leq (1 + \varepsilon) \text{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)
- Result G' spans P and has weight $\leq (1 + \varepsilon) \text{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

- Fact: G is a $(1 + \varepsilon)$ -spanner for $P \Leftrightarrow$ Each $p, q \in P$ joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)
- Result G' spans P and has weight $\leq (1 + \varepsilon) \text{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST

Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

- Fact: *G* is a $(1 + \varepsilon)$ -spanner for *P* \Leftrightarrow Each *p*, *q* \in *P* joined by a path of length $\leq (1 + \varepsilon) ||pq||$.
- Replace each edge of EMST(P) with its spanner path Total weight increases by at most (1 + ε)
- Result G' spans P and has weight $\leq (1 + \varepsilon) \mathsf{EMST}(P)$
- The weight of MST(G) can be no larger

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

$(1/\varepsilon)$ -WSPD has too many pairs $(O(n/\varepsilon^d))$

• Build a 2-WSPD \Rightarrow Only O(n) pairs

■ Be smarter about computing ε -approximate closest pairs? $\Rightarrow \widetilde{O}(n/\varepsilon^{d/2})$ [CK95], $\widetilde{O}(n/\varepsilon^{d/3})$ [AC14], $\widetilde{O}(n/\varepsilon^{d/4})$ [Ch17, AFM17] \leftarrow tough!

 \blacksquare Use lower bounds on MST weight more judiciously \leftarrow our approach

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up $(1/\varepsilon)$ -WSPD has too many pairs $(O(n/\varepsilon^d))$

• Build a 2-WSPD \Rightarrow Only O(n) pairs

■ Be smarter about computing ε -approximate closest pairs? $\Rightarrow \widetilde{O}(n/\varepsilon^{d/2})$ [CK95], $\widetilde{O}(n/\varepsilon^{d/3})$ [AC14], $\widetilde{O}(n/\varepsilon^{d/4})$ [Ch17, AFM17] \leftarrow tough!

 \blacksquare Use lower bounds on MST weight more judiciously \leftarrow our approach

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- $(1/\varepsilon)$ -WSPD has too many pairs $(O(n/\varepsilon^d))$
 - Build a 2-WSPD \Rightarrow Only O(n) pairs
 - Be smarter about computing ε -approximate closest pairs? $\Rightarrow \widetilde{O}(n/\varepsilon^{d/2})$ [CK95], $\widetilde{O}(n/\varepsilon^{d/3})$ [AC14], $\widetilde{O}(n/\varepsilon^{d/4})$ [Ch17, AFM17] \leftarrow tough!
 - Use lower bounds on MST weight more judiciously \leftarrow our approach

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- $(1/\varepsilon)$ -WSPD has too many pairs $(O(n/\varepsilon^d))$
 - Build a 2-WSPD \Rightarrow Only O(n) pairs
 - Be smarter about computing ε -approximate closest pairs? $\Rightarrow \widetilde{O}(n/\varepsilon^{d/2})$ [CK95], $\widetilde{O}(n/\varepsilon^{d/3})$ [AC14], $\widetilde{O}(n/\varepsilon^{d/4})$ [Ch17, AFM17] \leftarrow tough!

• Use lower bounds on MST weight more judiciously \leftarrow our approach

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy
- Analysis In Practice Background GeoMST
- GeoMST2 Component-First
- Wrap-Up

- $(1/\varepsilon)$ -WSPD has too many pairs $(O(n/\varepsilon^d))$
 - Build a 2-WSPD \Rightarrow Only O(n) pairs
 - Be smarter about computing ε -approximate closest pairs? $\Rightarrow \widetilde{O}(n/\varepsilon^{d/2})$ [CK95], $\widetilde{O}(n/\varepsilon^{d/3})$ [AC14], $\widetilde{O}(n/\varepsilon^{d/4})$ [Ch17, AFM17] \leftarrow tough!
 - \blacksquare Use lower bounds on MST weight more judiciously \leftarrow our approach

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- (1/arepsilon)-WSPD has too many pairs $(O(n/arepsilon^d))$
 - Build a 2-WSPD \Rightarrow Only O(n) pairs
 - Be smarter about computing ε -approximate closest pairs? $\Rightarrow \widetilde{O}(n/\varepsilon^{d/2})$ [CK95], $\widetilde{O}(n/\varepsilon^{d/3})$ [AC14], $\widetilde{O}(n/\varepsilon^{d/4})$ [Ch17, AFM17] \leftarrow tough!
 - Use lower bounds on MST weight more judiciously \leftarrow our approach

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Lemma [Czumaj et al. 2005]

Consider a grid of side length s in \mathbb{R}^d . Let m be the number of grid boxes containing at least one point of P. Then there is a constant c (depending on d) such that wt(MST(P)) $\geq sm/c$.

- Color the grid with 2^d colors. Boxes of the same color are separated by distance ≥ s
 - Some color class has at least $m/2^d$ boxes
 - The cost of connecting these boxes is $\Omega(sm)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Lemma [Czumaj et al. 2005]

Consider a grid of side length s in \mathbb{R}^d . Let m be the number of grid boxes containing at least one point of P. Then there is a constant c (depending on d) such that wt(MST(P)) $\geq sm/c$.

- Color the grid with 2^d colors. Boxes of the same color are separated by distance ≥ s
- Some color class has at least $m/2^d$ boxes
- The cost of connecting these boxes is $\Omega(sm)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Lemma [Czumaj et al. 2005]

Consider a grid of side length s in \mathbb{R}^d . Let m be the number of grid boxes containing at least one point of P. Then there is a constant c (depending on d) such that wt(MST(P)) $\geq sm/c$.

- Color the grid with 2^d colors. Boxes of the same color are separated by distance ≥ s
- Some color class has at least $m/2^d$ boxes
- The cost of connecting these boxes is $\Omega(sm)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Lemma [Czumaj et al. 2005]

Consider a grid of side length s in \mathbb{R}^d . Let m be the number of grid boxes containing at least one point of P. Then there is a constant c (depending on d) such that wt(MST(P)) $\geq sm/c$.

- Color the grid with 2^d colors. Boxes of the same color are separated by distance ≥ s
- Some color class has at least $m/2^d$ boxes
- The cost of connecting these boxes is $\Omega(sm)$

Talk Overview

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory
- Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First
- Wrap-Up

- Preliminaries: WSPDs, MSTs, and Fast Lower Bounds
- Theory: ε -approximate MSTs in $\widetilde{O}(n/\varepsilon^2)$ time (joint with Sunil Arya)
- Practice: A more practical approach and implementation

Talk Overview

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory
- Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Preliminaries: WSPDs, MSTs, and Fast Lower Bounds
- Theory: ε -approximate MSTs in $\widetilde{O}(n/\varepsilon^2)$ time (joint with Sunil Arya)
- Practice: A more practical approach and implementation

Talk Overview

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory

Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Preliminaries: WSPDs, MSTs, and Fast Lower Bounds

- Theory: ε -approximate MSTs in $\widetilde{O}(n/\varepsilon^2)$ time (joint with Sunil Arya)
 - Simple, deterministic, using standard data structures
 - Novel amortized cost analysis
 - The $1/\varepsilon^2$ factor is independent of dimension

Practice: A more practical approach and implementation

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow

Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Compute a 2-WSPD for P

- Each box stores a representative point
- For each WSP (A_i, B_i) :

• Let s be the box size. Subdivide A_i and B_i until the box diameter $\leq \varepsilon s$

- $(p_i, q_i) \leftarrow \text{closest pair of box representatives}$
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Slow! $O(n/(\varepsilon^d)^2) = O(n/\varepsilon^{2d}).$

Worst case arises when pairs have many boxes.

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

Simple+Slow Smart+Sloppy Analysis

In Theory

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Compute a 2-WSPD for *P*

- Each box stores a representative point
- For each WSP (A_i, B_i) :
 - Let s be the box size. Subdivide A_i and B_i until the box diameter ≤ εs
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives

• $G \leftarrow \text{closest pairs. Return MST}(G)$

Slow! $O(n/(\varepsilon^d)^2) = O(n/\varepsilon^{2d}).$

Worst case arises when pairs have many boxes.

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

Simple+Slow Smart+Sloppy Analysis

In Theory

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Compute a 2-WSPD for *P*
- Each box stores a representative point
- For each WSP (A_i, B_i) :
 - Let s be the box size. Subdivide A_i and B_i until the box diameter ≤ εs
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives

• $G \leftarrow \text{closest pairs. Return MST}(G)$

Slow! $O(n/(\varepsilon^d)^2) = O(n/\varepsilon^{2d}).$

Worst case arises when pairs have many boxes.

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory

Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Compute a 2-WSPD for *P*
- Each box stores a representative point
- For each WSP (A_i, B_i) :
 - Let s be the box size. Subdivide A_i and B_i until the box diameter ≤ εs
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives

• $G \leftarrow \text{closest pairs. Return MST}(G)$

Slow! $O(n/(\varepsilon^d)^2) = O(n/\varepsilon^{2d}).$

Worst case arises when pairs have many boxes.

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

Simple+Slow Smart+Sloppy Analysis

In Theory

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Compute a 2-WSPD for *P*

- Each box stores a representative point
- For each WSP (A_i, B_i) :
 - Let s be the box size. Subdivide A_i and B_i until the box diameter ≤ εs
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives

• $G \leftarrow \text{closest pairs. Return MST}(G)$

Slow! $O(n/(\varepsilon^d)^2) = O(n/\varepsilon^{2d}).$

Worst case arises when pairs have many boxes.

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory

Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Compute a 2-WSPD for P
- Each box stores a representative point
- For each WSP (A_i, B_i) :
 - Let s be the box size. Subdivide A_i and B_i until the box diameter ≤ εs
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Slow! $O(n/(\varepsilon^d)^2) = O(n/\varepsilon^{2d}).$

Worst case arises when pairs have many boxes.

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory

Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Compute a 2-WSPD for P
- Each box stores a representative point
- For each WSP (A_i, B_i) :
 - Let s be the box size. Subdivide A_i and B_i until the box diameter ≤ εs
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Slow! $O(n/(\varepsilon^d)^2) = O(n/\varepsilon^{2d}).$

Worst case arises when pairs have many boxes.

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Compute a 2-WSPD for *P*

- Each box stores a representative point
- For each (A_i, B_i) approximate the closest pair:
 - Let *s* be the box size. Subdivide *A_i* and *B_i* until either:
 - Box diameter $\leq \varepsilon s$ or —
 - The number of nonempty boxes ≥ c/ε (for some constant c)
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

- Compute a 2-WSPD for *P*
- Each box stores a representative point
- For each (A_i, B_i) approximate the closest pair:
 - Let *s* be the box size. Subdivide *A_i* and *B_i* until either:
 - Box diameter $\leq \varepsilon s$ or —
 - The number of nonempty boxes ≥ c/ε (for some constant c)
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Compute a 2-WSPD for *P*

- Each box stores a representative point
- For each (A_i, B_i) approximate the closest pair:
 - Let *s* be the box size. Subdivide *A_i* and *B_i* until either:
 - Box diameter $\leq \varepsilon s$ or —
 - The number of nonempty boxes ≥ c/ε (for some constant c)
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

- Compute a 2-WSPD for *P*
- Each box stores a representative point
- For each (A_i, B_i) approximate the closest pair:
 - Let *s* be the box size. Subdivide *A_i* and *B_i* until either:
 - Box diameter $\leq \varepsilon s$ or —
 - The number of nonempty boxes ≥ c/ε (for some constant c)
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

- Compute a 2-WSPD for *P*
- Each box stores a representative point
- For each (A_i, B_i) approximate the closest pair:
 - Let *s* be the box size. Subdivide *A_i* and *B_i* until either:
 - Box diameter ≤ *ε s* or —
 - The number of nonempty boxes ≥ c/ε (for some constant c)
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

- Compute a 2-WSPD for *P*
- Each box stores a representative point
- For each (A_i, B_i) approximate the closest pair:
 - Let *s* be the box size. Subdivide *A_i* and *B_i* until either:
 - Box diameter ≤ *ε s* or —
 - The number of nonempty boxes ≥ c/ε (for some constant c)
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Compute a 2-WSPD for *P*

- Each box stores a representative point
- For each (A_i, B_i) approximate the closest pair:
 - Let *s* be the box size. Subdivide *A_i* and *B_i* until either:
 - Box diameter ≤ *ε s* or —
 - The number of nonempty boxes ≥ c/ε (for some constant c)
 - $(p_i, q_i) \leftarrow$ closest pair of box representatives
- $G \leftarrow \text{closest pairs. Return MST}(G)$

Approximation Analysis (First Attempt)

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

• Case 1: Box diameters $\leq \varepsilon s$:

• Absolute error $\leq 2\varepsilon s \lesssim \varepsilon \cdot \text{dist}(A_i, B_i)$

 $\blacksquare \text{ Relative error} \lesssim \varepsilon$

Case 2: Number of nonempty boxes $\geq c/\varepsilon$:

 \blacksquare Let δ be the diameters of the boxes

• Absolute error $\lesssim \delta$

By Lower-Bound Lemma, weight of MST restricted to A_i or B_i is $\geq \delta(c/\varepsilon)/c = \delta/\varepsilon$

Relative error is $\lesssim \varepsilon$ (amortized over the box)

... hey, aren't you multiply charging?
Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

• Case 1: Box diameters $\leq \varepsilon s$:

- Absolute error $\leq 2\varepsilon s \lesssim \varepsilon \cdot \text{dist}(A_i, B_i)$
- Relative error $\leq \varepsilon$
- **Case 2**: Number of nonempty boxes $\geq c/\varepsilon$:
 - \blacksquare Let δ be the diameters of the boxes
 - Absolute error $\lesssim \delta$
 - By Lower-Bound Lemma, weight of MST restricted to A_i or B_i is $\geq \delta(c/\varepsilon)/c = \delta/\varepsilon$
 - \blacksquare Relative error is $\lesssim arepsilon$ (amortized over the box)

... hey, aren't you multiply charging?

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Case 1: Box diameters $\leq \varepsilon s$:
 - Absolute error $\leq 2\varepsilon s \lesssim \varepsilon \cdot \text{dist}(A_i, B_i)$
 - Relative error $\lesssim \varepsilon$
- **Case 2**: Number of nonempty boxes $\geq c/\varepsilon$:
 - \blacksquare Let δ be the diameters of the boxes
 - Absolute error $\lesssim \delta$
 - By Lower-Bound Lemma, weight of MST restricted to A_i or B_i is $\geq \delta(c/\varepsilon)/c = \delta/\varepsilon$
 - \blacksquare Relative error is $\lesssim arepsilon$ (amortized over the box)
 - ... hey, aren't you multiply charging?

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Case 1: Box diameters $\leq \varepsilon s$:
 - Absolute error $\leq 2\varepsilon s \lesssim \varepsilon \cdot \text{dist}(A_i, B_i)$
 - Relative error $\lesssim \varepsilon$
- **Case 2**: Number of nonempty boxes $\geq c/\varepsilon$:
 - \blacksquare Let δ be the diameters of the boxes
 - Absolute error $\leq \delta$
 - By Lower-Bound Lemma, weight of MST restricted to A_i or B_i is $\geq \delta(c/\varepsilon)/c = \delta/\varepsilon$
 - Relative error is $\lesssim \varepsilon$ (amortized over the box)

... hey, aren't you multiply charging?

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Case 1: Box diameters $\leq \varepsilon s$:
 - Absolute error $\leq 2\varepsilon s \lesssim \varepsilon \cdot \text{dist}(A_i, B_i)$
 - Relative error $\leq \varepsilon$
- **Case 2**: Number of nonempty boxes $\geq c/\varepsilon$:
 - \blacksquare Let δ be the diameters of the boxes
 - Absolute error $\leq \delta$
 - By Lower-Bound Lemma, weight of MST restricted to A_i or B_i is $\geq \delta(c/\varepsilon)/c = \delta/\varepsilon$
 - Relative error is $\lesssim \varepsilon$ (amortized over the box)
 - ... hey, aren't you multiply charging?

Approximation Analysis (Finer Points)

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory

Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

We charge the same MST edge multiple times:

- Multiple WSPs share the same quadtree box
 - each box is in $O(\sqrt{d})^d = O(1)$ WSPs
 - \rightarrow increase \emph{c} by this constant
- Multiple tree levels charge the same edge
 - ightarrow further increase c by tree height
 - $imes Oig(\log rac{n}{arepsilon}ig)$ [Arora (1998)]

Reducing the log factor

— A more refined analysis reduces the log factor to $O\left(\log \frac{1}{\varepsilon}\right)$

Approximation Analysis (Finer Points)

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory

Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

We charge the same MST edge multiple times:

- Multiple WSPs share the same quadtree box
 - each box is in $O(\sqrt{d})^d = O(1)$ WSPs
 - \rightarrow increase $\it c$ by this constant
- Multiple tree levels charge the same edge
 - \rightarrow further increase c by tree height
 - $\times O(\log \frac{n}{\varepsilon})$ [Arora (1998)]

Reducing the log factor

— A more refined analysis reduces the log factor to $Oig(\lograc{1}{arepsilon}ig)$

Approximation Analysis (Finer Points)

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory

Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

We charge the same MST edge multiple times:

- Multiple WSPs share the same quadtree box
 - each box is in $O(\sqrt{d})^d = O(1)$ WSPs
 - \rightarrow increase \emph{c} by this constant
- Multiple tree levels charge the same edge
 - \rightarrow further increase \emph{c} by tree height
 - $\times O(\log \frac{n}{\varepsilon})$ [Arora (1998)]

Reducing the log factor

— A more refined analysis reduces the log factor to $O\big(\log \frac{1}{\varepsilon}\big)$

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory Simple+Slow
- Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Build the quadtree and WSPD: $O(n \log n)$
- Find the approximate closest pair for each WSP:
 - O(n) WSPs
 - $O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$ boxes per WSP
 - $O((\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2)$ representative pairs per WSP
- Compute the MST of $G: O(n \log n)$
- Total time: $O(n \log n + (\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2 n) = \widetilde{O}(n/\varepsilon^2)$

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory
- Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Build the quadtree and WSPD: $O(n \log n)$
- Find the approximate closest pair for each WSP:
 - O(n) WSPs
 - $O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$ boxes per WSP
 - $O((\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2)$ representative pairs per WSP
- Compute the MST of $G: O(n \log n)$
- Total time: $O(n \log n + (\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2 n) = \widetilde{O}(n/\varepsilon^2)$

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory
- Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Build the quadtree and WSPD: $O(n \log n)$
- Find the approximate closest pair for each WSP:
 - O(n) WSPs
 - $O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$ boxes per WSP
 - $O((\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2)$ representative pairs per WSP
- Compute the MST of $G: O(n \log n)$
 - Total time: $O(n \log n + (\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2 n) = \widetilde{O}(n/\varepsilon^2)$

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory
- Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Build the quadtree and WSPD: $O(n \log n)$
- Find the approximate closest pair for each WSP:
 - *O*(*n*) WSPs
 - $O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$ boxes per WSP
 - $O((\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2)$ representative pairs per WSP
- Compute the MST of $G: O(n \log n)$
- Total time: $O(n \log n + (\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2 n) = \widetilde{O}(n/\varepsilon^2)$

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory
- Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Build the quadtree and WSPD: $O(n \log n)$
- Find the approximate closest pair for each WSP:
 - O(n) WSPs
 - $O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$ boxes per WSP
 - $O((\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2)$ representative pairs per WSP
- Compute the MST of $G: O(n \log n)$
- Total time: $O(n \log n + (\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2 n) = \widetilde{O}(n/\varepsilon^2)$

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory
- Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- Build the quadtree and WSPD: $O(n \log n)$
- Find the approximate closest pair for each WSP:
 - O(n) WSPs
 - $O(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})$ boxes per WSP
 - $O((\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2)$ representative pairs per WSP
- Compute the MST of $G: O(n \log n)$
- Total time: $O(n \log n + (\frac{1}{\varepsilon} \log \frac{1}{\varepsilon})^2 n) = \widetilde{O}(n/\varepsilon^2)$

Talk Overview

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2
- Component-First
- Wrap-Up

- Preliminaries: WSPDs, MSTs, and Fast Lower Bounds
- Theory: ε -approximate MSTs in $\widetilde{O}(n/\varepsilon^2)$ time
- Practice: A more practical approach and implementation

Talk Overview

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice
- Background GeoMST GeoMST2 Component-First
- Wrap-Up

- Preliminaries: WSPDs, MSTs, and Fast Lower Bounds
- Theory: ε -approximate MSTs in $\widetilde{O}(n/\varepsilon^2)$ time
- Practice: A more practical approach and implementation

Practical Solutions

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background

GeoMST GeoMST2 Component-First Wrap-Up

Practical solutions: (for exact MSTs)

- Bentley and Friedman (1978): kd-trees + Prim
- Narasimhan and Zachariasen (2001): WSPDs + Kruskal: GeoMST, GeoMST2
- Chatterjee, Connor, and Kumar (2010): WSPDs + Kruskal: GeoFilterKruskal
- March, Ram, Gray (2010): WSPD + Borůvka
- Here: Adding approximation (Joint with Phong Dinh and Jerry Tan)

GeoMST(P):

- $\Psi \leftarrow$ a 2-WSPD for *P*
- For each (A_i, B_i) ∈ Ψ, compute the bichromatic closest pair, BCP(A_i, B_i)
- Run Kruskal on the resulting edges

$\mathsf{BCP}(A_i, B_i)$

- If $|A_i| = |B_i| = 1$ return this pair
- Else, split the larger cell (kd-tree children) A'_i, A'_i
 - Compute $\delta' \leftarrow \mathsf{BCP}(A'_i, B_i)$ (closer child)
 - $\blacksquare \ \mathsf{If} \ (\mathsf{cell-dist}(A_i'',B_i) < \delta'/(1+\epsilon)) \quad \delta'' \gets \mathsf{BCP}(A_i',B_i)$
 - return min (δ', δ'')

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

GeoMST(P):

- $\Psi \leftarrow a 2$ -WSPD for *P*
- For each (A_i, B_i) ∈ Ψ, compute the bichromatic closest pair, BCP(A_i, B_i)
- Run Kruskal on the resulting edges

- If $|A_i| = |B_i| = 1$ return this pair
- Else, split the larger cell (kd-tree children) A'_i , A''_i
- Compute $\delta' \leftarrow \mathsf{BCP}(A'_i, B_i)$ (closer child)
- $\blacksquare \ \mathsf{If} \ (\mathsf{cell-dist}(A_i'',B_i) < \delta'/(1+\varepsilon)) \quad \delta'' \gets \mathsf{BCP}(A_i',B_i)$
- **return** $\min(\delta', \delta'')$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

GeoMST(P):

- $\Psi \leftarrow a 2$ -WSPD for P
- For each (A_i, B_i) ∈ Ψ, compute the bichromatic closest pair, BCP(A_i, B_i)
- Run Kruskal on the resulting edges

- If $|A_i| = |B_i| = 1$ return this pair
- Else, split the larger cell (kd-tree children) A'_i , A''_i
- Compute $\delta' \leftarrow \mathsf{BCP}(A'_i, B_i)$ (closer child)
- $\blacksquare \ \mathsf{If} \ (\mathsf{cell-dist}(A_i'',B_i) < \delta'/(1+\varepsilon)) \quad \delta'' \gets \mathsf{BCP}(A_i',B_i)$
- return $\min(\delta', \delta'')$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

GeoMST(P):

- $\Psi \leftarrow a 2$ -WSPD for P
- For each (A_i, B_i) ∈ Ψ, compute the bichromatic closest pair, BCP(A_i, B_i)
- Run Kruskal on the resulting edges

- If $|A_i| = |B_i| = 1$ return this pair
- Else, split the larger cell (kd-tree children) A'_i , A''_i
- Compute $\delta' \leftarrow BCP(A'_i, B_i)$ (closer child)
- $\blacksquare \mathsf{ If } (\mathsf{cell-dist}(A_i'',B_i) < \delta'/(1+\varepsilon)) \quad \delta'' \gets \mathsf{BCP}(A_i',B_i)$
- return $\min(\delta', \delta'')$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

GeoMST(P):

- $\Psi \leftarrow a 2$ -WSPD for P
- For each (A_i, B_i) ∈ Ψ, compute the bichromatic closest pair, BCP(A_i, B_i)
- Run Kruskal on the resulting edges

- If $|A_i| = |B_i| = 1$ return this pair
- Else, split the larger cell (kd-tree children) A'_i , A''_i
- Compute $\delta' \leftarrow BCP(A'_i, B_i)$ (closer child)
- $\blacksquare \mathsf{ If } (\mathsf{cell-dist}(A_i'',B_i) < \delta'/(1+\varepsilon)) \quad \delta'' \gets \mathsf{BCP}(A_i',B_i)$
- return $\min(\delta', \delta'')$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

GeoMST(P):

- $\Psi \leftarrow a \text{ 2-WSPD for } P$
- For each (A_i, B_i) ∈ Ψ, compute the bichromatic closest pair, BCP(A_i, B_i)
- Run Kruskal on the resulting edges

- If $|A_i| = |B_i| = 1$ return this pair
- Else, split the larger cell (kd-tree children) A'_i , A''_i
- Compute $\delta' \leftarrow BCP(A'_i, B_i)$ (closer child)
- If $(\operatorname{cell-dist}(A_i'', B_i) < \delta'/(1 + \varepsilon))$ $\delta'' \leftarrow \operatorname{BCP}(A_i', B_i)$
- return $\min(\delta', \delta'')$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

GeoMST(P):

- $\Psi \leftarrow a \text{ 2-WSPD for } P$
- For each (A_i, B_i) ∈ Ψ, compute the bichromatic closest pair, BCP(A_i, B_i)
- Run Kruskal on the resulting edges

- If $|A_i| = |B_i| = 1$ return this pair
- Else, split the larger cell (kd-tree children) A'_i , A''_i
- Compute $\delta' \leftarrow BCP(A'_i, B_i)$ (closer child)
- If $(\operatorname{cell-dist}(A_i'', B_i) < \delta'/(1 + \varepsilon))$ $\delta'' \leftarrow \operatorname{BCP}(A_i', B_i)$
- return $\min(\delta', \delta'')$

GeoMST(P):

Introduction Background

Approximation Prior Work Preliminaries

WSPD+MST

Lower Bound In Theory

Simple+Slow Smart+Sloppy Analysis

In Practice Background

GeoMST GeoMST2 Component-First

Wrap-Up

- $\Psi \leftarrow$ a 2-WSPD for *P*
- For each (A_i, B_i) ∈ Ψ, compute the bichromatic closest pair, BCP(A_i, B_i)
- Run Kruskal on the resulting edges

- If $|A_i| = |B_i| = 1$ return this pair
- Else, split the larger cell (kd-tree children) A'_i , A''_i
- Compute $\delta' \leftarrow BCP(A'_i, B_i)$ (closer child)
- If $(\text{cell-dist}(A_i'', B_i) < \delta'/(1 + \varepsilon))$ $\delta'' \leftarrow \mathsf{BCP}(A_i', B_i)$
- return $\min(\delta', \delta'')$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis In Practice Background GeoMST

GeoMST2 Component-First Wrap-Up

$\label{eq:practical Limitation} \mbox{ Practical Limitation} \mbox{ — Too many WSPs in higher dimensions}$

Point set (n = 1000)

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis In Practice Background

GeoMST GeoMST2 Component-First Wrap-Up

Practical Limitation — Too many WSPs in higher dimensions

MST (n = 1000)

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis In Practice Background GeoMST

GeoMST2 Component-First Wrap-Up

$\label{eq:practical Limitation} \mbox{ Practical Limitation} \mbox{ — Too many WSPs in higher dimensions}$

WSPs joining reps (n = 1000)

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound In Theory

Simple+Slow Smart+Sloppy Analysis In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Practical Limitation — Too many WSPs in higher dimensions

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

- Process WSPs in increasing order of distance
- Add edge to MST whenever it is safe:
- $\mathsf{BCP}(A_i, B_i) \leq \mathsf{distance} \ \mathsf{between} \ \mathsf{next} \ \mathsf{WSP}$
- No postprocessing. The safe edges form the MST

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

- Process WSPs in increasing order of distance
- Add edge to MST whenever it is safe:
- $BCP(A_i, B_i) \leq distance between next WSP$
- No postprocessing. The safe edges form the MST

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe: BCP(A_i, B_i) < distance between next WS</p>

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe: BCP(A_i, B_i) < distance between next WS</p>

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe: BCP(A_i, B_i) < distance between next WS</p>

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe: BCP(A_i, B_i) < distance between next WS</p>

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe: BCP(A_i, B_i) < distance between next WS</p>

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe: BCP(A_i, B_i) < distance between next WS</p>

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe: BCP(A_i, B_i) < distance between next WS</p>

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

Process WSPs in increasing order of distance

Add edge to MST whenever it is safe: BCP(A_i, B_i) < distance between next WS</p>

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

- Process WSPs in increasing order of distance
- Add edge to MST whenever it is safe: BCP(A_i, B_i) ≤ distance between next WSP

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

- Process WSPs in increasing order of distance
- Add edge to MST whenever it is safe: BCP(A_i, B_i) ≤ distance between next WSP

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

- Process WSPs in increasing order of distance
- Add edge to MST whenever it is safe: BCP(A_i, B_i) ≤ distance between next WSP

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

- Process WSPs in increasing order of distance
- Add edge to MST whenever it is safe: $BCP(A_i, B_i) \leq distance between next WSP$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-Firs

Wrap-Up

Want a WSP-based approach, but without the WSPD!

- Build WSPs only as needed
- Run Kruskal in parallel with WSP construction

GeoMST2: (Narasimhan and Zachariasen, 2001)

- Process WSPs in increasing order of distance
- Add edge to MST whenever it is safe: BCP(A_i, B_i) ≤ distance between next WSP
- No postprocessing. The safe edges form the MST

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

A further refinement to GeoMST2

- If (all of A_i in one component and all of B_i in one component) then
 - If (same component) then discard the pair (A_i, B_i)
 - else compute $BCP(A_i, B_i)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

A further refinement to GeoMST2

- If (all of A_i in one component and all of B_i in one component) then
 - If (same component) then discard the pair (A_i, B_i)
 - else compute $BCP(A_i, B_i)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

A further refinement to GeoMST2

Key modification: Process pairs (A_i, B_i) even if they are not well-separated

- If (all of A_i in one component and all of B_i in one component) then
 - If (same component) then discard the pair
 (A_i, B_i)

• else compute $BCP(A_i, B_i)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

A further refinement to GeoMST2

Key modification: Process pairs (A_i, B_i) even if they are not well-separated

- If (all of A_i in one component and all of B_i in one component) then
 - If (same component) then discard the pair
 (A_i, B_i)

• else compute $BCP(A_i, B_i)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

A further refinement to GeoMST2

- If (all of A_i in one component and all of B_i in one component) then
 - If (same component) then discard the pair (A_i, B_i)
 - else compute $BCP(A_i, B_i)$

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First

Wrap-Up

A further refinement to GeoMST2

- If (all of A_i in one component and all of B_i in one component) then
 - If (same component) then discard the pair (*A_i*, *B_i*)
 - else compute $BCP(A_i, B_i)$

GeoMST2 and Component-First Performance

Simple+Slow Smart+Sloppy Analysis In Practice

Background GeoMST GeoMST2 Component-First

Wrap-Up

These algorithms are quite practical, and further improvements may be possible

Concluding Remarks

- Summary:
 - ε -approximate EMSTs in \mathbb{R}^d in $\widetilde{O}(n/\varepsilon^2)$ time
 - Simple, deterministic algorithm (quadtrees, well-separated pairs)
 - Not really practical, but ideas can be applied to improve implementations

Caveats:

- EMST minimizes the bottleneck (max) edge cost ours does not
- Big-O hides factors that grow exponentially with dimension

Further Work:

- Approximate minimum bottleneck spanning tree in similar time?
- Reduce extraneous factors $1/\varepsilon^2 \to 1/\varepsilon$? $\log^2(1/\varepsilon) \to O(1)$?
- Further engineering of practical approaches

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Concluding Remarks

- Summary:
 - ε -approximate EMSTs in \mathbb{R}^d in $\widetilde{O}(n/\varepsilon^2)$ time
 - Simple, deterministic algorithm (quadtrees, well-separated pairs)
 - Not really practical, but ideas can be applied to improve implementations

Caveats:

- EMST minimizes the bottleneck (max) edge cost ours does not
- Big-O hides factors that grow exponentially with dimension

Further Work:

- Approximate minimum bottleneck spanning tree in similar time?
- Reduce extraneous factors $1/\varepsilon^2 \to 1/\varepsilon$? $\log^2(1/\varepsilon) \to O(1)$?
- Further engineering of practical approaches

Thank you for your attention!

Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound

In Theory Simple+Slow Smart+Sloppy Analysis

In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

Bibliography

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First Wrap-Up

- P. K. Agarwal, H. Edelsbrunner, O. Schwartzkopf, and E. Welzl, Euclidean minimum spanning trees and bichromatic closest pairs, Discr. and Comp. Geom., 6, 1991, 407–422
 - S. Arora, Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other Geometric Problems, J. of the ACM, 45, 1998, 753–782
 - S. Arya and T. M. Chan, Better ε-dependencies for offline approximate nearest neighbor search, Euclidean minimum spanning trees, and ε-kernels, Proc. 30th SoCG, 2014, 416–425
 - S. Arya, G. D. da Fonseca, and D. M. Mount, Near-optimal ε-kernel construction and related problems, Proc. 33rd Internat. Sympos. Comput. Geom., 2017, 10:1–15
- T. M. Chan, Applications of Chebyshev polynomials to low-dimensional computational geometry, Proc. 33rd Internat. Sympos. Comput. Geom., 2017, 26:1–15
- P. B. Callahan and S. R. Kosaraju, A Decomposition of Multidimensional Point Sets with Applications to k-Nearest-Neighbors and *n*-Body Potential Fields, J. of the ACM, 42, 1995, 67–90
- S. Chatterjee, M. Connor, and P. Kumar, Geometric Minimum Spanning Trees with GeoFilterKruskal, Proc. 9th Internat. Sympos. on Exper. Alg., 2010, 486-500
- B. Chazelle, R. Rubinfeld, and L. Trevisan, Approximating the minimum spanning tree weight in sublinear time, SIAM J. Comput., 2005, 34:1370–1379

Bibliography

- Introduction Background Approximation Prior Work Preliminaries WSPD+MST Lower Bound
- In Theory Simple+Slow Smart+Sloppy Analysis
- In Practice Background GeoMST GeoMST2 Component-First
- Wrap-Up

- A. Czumaj, F. Ergün, L. Fortnow, A. Magen, I. Newman, R. Rubinfeld, and C. Sohler, Approximating the Weight of the Euclidean Minimum Spanning Tree in Sublinear Time, SIAM J. Comput., 35, 2005, 91–109
- A. Czumaj and C. Sohler, Estimating the Weight of Metric Minimum Spanning Trees in Sublinear Time, SIAM J. Comput., 39, 2009, 904–922
- G. Narasimhan and M. Zachariasen, Geometric Minimum Spanning Trees via Well-Separated Pair Decompositions, ACM J. Exper. Algorithms, 6, 2001
- A. C. Yao, On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems, SIAM J. Comput., 11, 1982, 721–736