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Motivation

I Def: A matrix is Totally Nonnegative (TN) if all minors ≥ 0
I This talk: All matrix computations with TN matrices

possible:
I to high relative accuracy
I in floating point arithmetic
I at no extra cost

I Connection to computed-aided geometric design, e.g.,
“When converting a curve expressed in a B-spline

expansion into its Bézier form, corner cutting of the B-
spline control polygon leads to the Bézier points exactly
when the Bézier matrix is totally positive.”
Ref: Corner cutting algorithms for the Bézier representation of free form curves, Goodman, Micchelli, Linear
Algebra Appl. 1998.



Examples of TN matrices

I Vandermonde, Hilbert, Pascal:

V =


1 1 1 1
1 2 22 23

1 3 32 33

1 5 52 53

 H =


1 1/2 1/3 1/4

1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7



P =


1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20


I Also Cauchy, Said–Ball, etc.
I Ubiquitous in practice: Occupy an octant in n2 space when

properly parameterized (as will see)



The matrix eigenvalue problem

I Goal: compute all eigenvalues of a TN matrix in floating
point arithmetic

I Including the zero Jordan structure!
I Very hard in general (per higher powers):

“The Jordan form is useful theoretically but is
very hard to compute in a numerically stable fash-
ion...”

James Demmel, Applied Numerical Linear Algebra.
I Why is that?



Floating point arithmetic

I Finite, countably many floating point numbers representing
the infinite, uncountable R

I Roundoff errors could make equal eigenvalues different
and destroy the Jordan structure!

I Even accurate eigenvalues alone are problematic

I The determinant and eigenvalues of
[
1 3
3 9

]
.

>> det([1 3; 3 9])
ans =
-4.9960e-16
>> eig([1 3; 3 9])
ans =
1.1102e-16
1.0000e+01



Eigenvalues of Pascal Matrix (which is TN)

Pn =


1 1 1 1 · · ·
1 2 3 4 · · ·
1 3 6 10 · · ·
1 4 10 20 · · ·
...

...
...

...
. . .



cond(P40) = 6× 1044
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Absolute vs. Relative Accuracy

I Absolute accuracy
|x − x̂ | ≤ ε

I Depends on the magnitude of x
I ε = 10−4 means what?
I Does x equal distance between planets or between

molecules?

I Relative accuracy
|x − x̂ | ≤ ε|x |

I Works fine regardless of magnitude of x
I ε = 10−4 means x̂ has 4 correct decimal digits!
I What if x = 0?



Reason accuracy is lost in floating point arithmetic

I fl(a� b) = (a� b)(1 + δ), � ∈ {+,−,×, /}
I Relative accuracy preserved in ×,+, /

Proof: (1 + δ) factors accumulate multiplicatively
I Subtractions of approximate quantities dangerous:

.123456789xxx
− .123456789yyy

.000000000zzz

I subtraction of exact initial data is OK!
I if all other subtractions avoided, we get accuracy

I Exactly what we do with TN matrices



Question:

I How do we know if a matrix is TN?

 1 2 6
4 13 69

28 131 852
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I Product of TN bidiagonals
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I Product of TN bidiagonals
I In general:

A = L1 · · · Ln−1 · D · Un−1 · · ·U1,

where Li lower bidiagonal, D diagonal, Ui upper bidiagonal
I Cauchy–Binet: TN × TN = TN
I Each red entry = minor1(A)

minor2(A)
· minor3(A)

minor4(A)
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↓

BD(A) =


1 2 3
4 5 6
7 8 9


The n2 nontrivial entries of BD(A):
I parameterize class of nonsingular TN matrices
I allow for highly accurate computations:

If A→ B, then BD(A)→ BD(B) accurate



Starting point is the bidiagonal decomposition

A =

1
1
l31 1

 1
l21 1

l32 1

d1
d2

d3

1 u12
1 u23

1

1
1 u13

1



I These are parameters the user must deliver

I Readily available for Vandermonde A =
[
x j−1

i

]n

i,j=1

di =
i−1∏
j=1

(xi − xj), lik =
i−1∏

j=n−k

xi+1 − xj+1

xi − xj
, uik = xi+n−k
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I Cauchy A =
[

1
xi+yj

]n

i,j=1

di =
i−1∏
k=1

(xi − xk )(yi − yk )

(xi + yk )(yi + xk )

lik =
xn−k + yi−n+k+1

xi + yi−n+k+1

i−1∏
l=n−k

xi+1 − xl+1

xi − xl

i−n+k−1∏
l=1

xi + yl

xi+1 + yl

uik =
yn−k + xi−n+k+1

yi + xi−n+k+1

i−1∏
l=n−k

yi+1 − yl+1

yi − yl

i−n+k−1∏
l=1

yi + xl

yi+1 + xl
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I Pascal: di = lij = uij = 1
I Reasonable requirement: Show me that your matrix is TN!
I Critical observation: BD(A) determines all eigenvalues

accurately! (matrix entries do not!)
I I.e., small relative perturbations in BD(A) cause small

relative perturbations to eigenvalues
I Eigenvalues “deserve” to be computed accurately
I The logic: The computed eigenvalues are rational

functions of entries of BD(A)
I So those rational functions must have only positive

coefficients (intuition, not proof)



Eigenvalue algorithm

I Reduction to tridiagonal form (Cryer ’76)
I Using only one operation: Addition/subtraction of one row

to the next/previous

+ + + +
+ + + +
+ + + +
+ + + +

 →


+ + + +
+ + + +
+ + + +
0 + + +

 →


+ + + 0
+ + + +
+ + + +
0 + + +

 →


+ + + 0
+ + + +
0 + + +
0 + + +

 →


+ + 0 0
+ + + +
0 + + +
0 + + +

 →


+ + 0 0
+ + + +
0 + + +
0 0 + +

 →


+ + 0 0
+ + + 0
0 + + +
0 0 + +



I λi = σ2
i , σi = singular values of bidiagonal Cholesky factor

I Solved accurately by Demmel and Kahan in 1989
I We implement on BD(A) and not on A!



Cryer’s algorithm applied to A

I To create a 0 in position (3,1) of1 2 4
1 3 9
1 4 16


we use similarity1

1
−1 1

1 2 4
1 3 9
1 4 16

1
1
1 1



=

1 2 4
1 3 9
0 1 7

1
1
1 1

 =

1 6 4
1 12 9
0 8 7





Now, Cryer’s applied to BD(A)

I Subtracting a multiple of one row from next to create a 0 is
equivalent to setting an entry of the BD to 0

1 2 4
1 3 9
1 4 16

 =

1
1
1 1

1
1 1

1 1

1
1

2

1 2
1 3

1

1
1 2

1


↓

1 2 4
1 3 9
0 1 7

 =

1
1
0 1

1
1 1

1 1

1
1

2

1 2
1 3

1

1
1 2

1



I No arithmetic performed!
I New matrix still TN



Next: Completing the similarity

I Adding a multiple of one row/col to next/previous is done
by changing the entries of the BD only

1 2 4
1 3 9
0 1 7

 =

1
1
0 1

1
1 1

1 1

1
1

2

1 2
1 3

1

1
1 2

1


↓ ↓

1 6 4
1 12 9
0 8 7

 =

1
1
0 1

1
2 1

3
2 1

1
6

2

1 6
1 4

3
1

1
1 2

1



I New entries are rational functions with > 0 coefficients
I No subtractions⇒ accuracy
I New matrix is still TN (Cauchy–Binet)



Elementary bidiagonal matrix

I The only operation we need to compute everything TN

Ei(b, c) =



1
. . .

c
b 1

. . .
1


an “elementary bidiagonal matrix”, b ≥ 0, c ≥ 0

I Differs from I in two entries only
I Building block of BD(A) : A = (

∏
Ei) ·

(∏
ET

i

)
I Ei = addition/subtraction of multiple of one row/column

from next previous



Multiplication by Ei1
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1
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1

1
y ′

x ′ z ′

1
1 k ′

1


x ′ = x
y ′ = y + kx
z ′ = 1/y ′

k ′ = kz/y1

I This is the LR algorithm, implemented as dqd
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Jordan blocks corresponding to zero eigenvalues

I OK, we get accurate eigenvalues
I Zero eigenvalues are exact!
I How about Jordan blocks?

I n − rank(A) = # Jordan blocks
I rank(A)− rank(A2) = # of Jordan blocks of size ≥ 2
I ...
I rank(A), rank(A2), . . . readily obtainable from its BD
I A2 is TN (as a product of TN) and its BD is a TN-preserving

op, thus BD accurate
I need to form BD of A2, . . . ,An



Example

A =
3 3 2 1
2 2 3 2
1 1 2 3
1 1 2 3

>> eig(A)
ans =

7.828427124746188e+00
2.171572875253811e+00
5.247731480861326e-16

-1.110223024625157e-16

>> [B,C]=STNBD(A); [e,jb]=STNEigenValues(B,C)
e =

7.8284
2.1716
0
0

jb =
2
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Conclusions

I First example of a Jordan structure being computed to high
relative accuracy

I Complete Jordan structure of Irreducible TN matrices
(Nonzero eigenvalues are distinct per Fallat–Gekhtman.)

I Future work: Get formulas for non-unique BD of singular
Vandermonde, etc.

I Software, paper:
http://www.math.sjsu.edu/∼koev


