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Collaborators

The work is collaborated with Shing-Tung Yau, Yalin Wang,
Feng Luo, Ronald Lok Ming Lui, Paul M. Thompson, Tony F.
Chan, Arie Kaufman, Hong Qin, Dimitris Samaras, Jie Gao and
many other mathematicians, computer scientists and doctors.
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Klein’s Program

Klein’s Erlangen Program

Different geometries study the invariants under different
transformation groups.

Geometries

Topology - homeomorphisms

Conformal Geometry - Conformal Transformations

Riemannian Geometry - Isometries

Differential Geometry - Rigid Motion
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Motivation

Conformal geometry lays down the theoretic foundation for

Surface mapping

Geometry classification

Shape analysis

Applied in computer graphics, computer vision, geometric
modeling, wireless sensor networking and medical imaging,
and many other engineering, medical fields.
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History

History

In pure mathematics, conformal geometry is the
intersection of complex analysis, algebraic topology,
Riemann surface theory, algebraic curves, differential
geometry, partial differential equation.

In applied mathematics, computational complex function
theory has been developed, which focuses on the
conformal mapping between planar domains.

Recently, computational conformal geometry has been
developed, which focuses on the conformal mapping
between surfaces.
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History

History

Conventional conformal geometric method can only handle the
mappings among planar domains.

Applied in thin plate deformation (biharmonic equation)

Membrane vibration

Electro-magnetic field design (Laplace equation)

Fluid dynamics

Aerospace design
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Reasons for Booming

Data Acquisition

3D scanning technology becomes mature, it is easier to obtain
surface data.
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Reasons for Booming

Computational Power

Computational power has been increased tremendously. With
the incentive in graphics, GPU becomes mature, which makes
numerical methods for solving PDE’s much easier.
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Fundamental Problems

1 Given a Riemannian metric on a surface with an arbitrary
topology, determine the corresponding conformal structure.

2 Compute the complete conformal invariants (conformal
modules), which are the coordinates of the surface in the
Teichmuller shape space.

3 Fix the conformal structure, find the simplest Riemannian
metric among all possible Riemannian metrics

4 Given desired Gaussian curvature, compute the
corresponding Riemannian metric.

5 Given the distortion between two conformal structures,
compute the quasi-conformal mapping.

6 Compute the extremal quasi-conformal maps.
7 Conformal welding, glue surfaces with various conformal

modules, compute the conformal module of the glued
surface.
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Complete Tools

Computational Conformal Geometry Library

1 Compute conformal mappings for surfaces with arbitrary
topologies

2 Compute conformal modules for surfaces with arbitrary
topologies

3 Compute Riemannian metrics with prescribed curvatures
4 Compute quasi-conformal mappings by solving Beltrami

equation
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Books

The theory, algorithms and sample code can be found in the
following books.

You can find them in the book store.
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Source Code Library

Please email me gu@cmsa.fas.harvard.edu for updated code
library on computational conformal geometry.
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Conformal Mapping
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biholomorphic Function

Definition (biholomorphic Function)

Suppose f : C→ C is invertible, both f and f−1 are holomorphic,
then then f is a biholomorphic function.

γ0

γ1

γ2

D0

D1
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Conformal Map

f

z w
τβ ◦ f ◦ φ−1

α

Uα Vβ

φα τβ

S1 ⊂ {(Uα, φα)} S2 ⊂ {(Vβ , τβ)}

The restriction of the mapping on each local chart is
biholomorphic, then the mapping is conformal.
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Conformal Mapping
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Conformal Geometry

Definition (Conformal Map)

Let φ : (S1,g1)→ (S2,g2) is a homeomorphism, φ is conformal
if and only if

φ∗g2 = e2ug1.

Conformal Mapping preserves angles.

θ

θ

David Gu Discrete Surface Ricci Flow



Conformal Mapping

Conformal maps Properties

Map a circle field on the surface to a circle field on the plane.
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Quasi-Conformal Map

Diffeomorphisms: maps ellipse field to circle field.
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Uniformization
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Conformal Canonical Representations

Theorem (Poincar é Uniformization Theorem)

Let (Σ,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric g̃ = e2λ g conformal to g which has
constant Gauss curvature.
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Uniformization of Open Surfaces

Definition (Circle Domain)

A domain in the Riemann sphere Ĉ is called a circle domain if
every connected component of its boundary is either a circle or
a point.

Theorem

Any domain Ω in Ĉ, whose boundary ∂Ω has at most countably
many components, is conformally homeomorphic to a circle
domain Ω∗ in Ĉ. Moreover Ω∗ is unique upto Möbius
transformations, and every conformal automorphism of Ω∗ is
the restriction of a Möbius transformation.
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Uniformization of Open Surfaces

Spherical Euclidean Hyperbolic
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Smooth Surface Ricci Flow
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface M with a
Riemannian metric g, a
local coordinate system
(u,v) is an isothermal
coordinate system, if

g = e2λ(u,v)(du2 +dv2).
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Gaussian Curvature

Gaussian Curvature

Suppose ḡ = e2λ g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K =−∆gλ =− 1
e2λ ∆λ ,

where

∆=
∂ 2

∂u2 +
∂ 2

∂v2
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Conformal Metric Deformation

Definition

Suppose M is a surface with a
Riemannian metric,

g =

(

g11 g12

g21 g22

)

Suppose λ : Σ→ R is a
function defined on the surface,
then e2λ g is also a Riemannian
metric on Σ and called a
conformal metric. λ is called
the conformal factor.

g → e2λ g

Conformal metric deformation.

Angles are invariant measured
by conformal metrics.
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Curvature and Metric Relations

Yamabi Equation

Suppose ḡ = e2λ g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K̄ = e−2λ (K −∆gλ ),

geodesic curvature on the boundary

k̄g = e−λ (kg −∂g,nλ ).
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Uniformization

Theorem (Poincar é Uniformization Theorem)

Let (Σ,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric g̃ = e2λ g conformal to g which has
constant Gauss curvature.
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Uniformization of Open Surfaces
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Surface Ricci Flow

Key ideas:

Conformal metric deformation

g → e2λ g

Ricci flow
dλ
dt

=−K ,

Gaussian curvature K =−∆gλ , evolution equation

dK
dt

=∆gK +2K 2

diffusion-reaction equation.
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Surface Ricci Flow

Definition (Normalized Hamilton’s Surface Ricci Flow)

A closed surface S with a Riemannian metric g, the Ricci flow
on it is defined as

dgij

dt
=

(

4πχ(S)

A(0)
−2K

)

gij .

where χ(S) is the Euler characteristic number of S, A(0) is the
initial total area.

The ricci flow preserves the total area during the flow, converge
to a metric with constant Gaussian curvature 4πχ(S)

A(0) .
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Ricci Flow

Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K̄ ) every where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K̄ ) every where.
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Discrete Surface
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.

Isometric gluing of triangles in E
2.

Isometric gluing of triangles in H
2,S2.
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.
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2.

Isometric gluing of triangles in H
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Discrete Generalization

Concepts

1 Discrete Riemannian Metric
2 Discrete Curvature
3 Discrete Conformal Metric Deformation

David Gu Discrete Surface Ricci Flow



Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on
the vertices, l : E = {all edges}→ R

+, satisfies triangular
inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} → R
1.

K (v) = 2π −∑
i

αi ,v 6∈ ∂M;K (v) = π −∑
i

αi ,v ∈ ∂M

Theorem (Discrete Gauss-Bonnet theorem)

∑
v 6∈∂M

K (v)+ ∑
v∈∂M

K (v) = 2πχ(M).

α1 α2
α3

v α1
α2

v
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Discrete Metrics Determines the Curvatures

vi vj

vk

li
lj

lk

θi

θk

θj

vi vj

vk

vi vj

vk

lili

lk
lk

ljlj

θi θi

θk θk

θjθj

R2 H2
S2

cosine laws

cos li =
cosθi +cosθj cosθk

sinθj sinθk
(1)

cosh li =
coshθi +coshθj coshθk

sinhθj sinhθk
(2)

1 =
cosθi +cosθj cosθk

sinθj sinθk
(3)
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Derivative cosine law

vi vj

vk

li

lk

lj

�i

�k

�j

Lemma (Derivative Cosine Law)

Suppose corner angles are the
functions of edge lengths, then

∂θi

∂ li
=

li
A

∂θi

∂ lj
= −∂θi

∂ li
cosθk

where A = lj lk sinθi .
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Discrete Conformal Structure

David Gu Discrete Surface Ricci Flow



Discrete Conformal Metric Deformation

Conformal maps Properties

transform infinitesimal circles to infinitesimal circles.

preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation

Replace infinitesimal circles by circles with finite radii.
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Discrete Conformal Metric Deformation vs CP
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Discrete Conformal Metric Deformation vs CP
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Discrete Conformal Metric Deformation vs CP
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Thurston’s Circle Packing Metric

Thurston’s CP Metric

We associate each vertex vi

with a circle with radius γi . On
edge eij , the two circles
intersect at the angle of Φij .
The edge lengths are

l2ij = γ2
i + γ2

j +2γiγj cosΦij

CP Metric (T ,Γ,Φ), T
triangulation,

Γ = {γi |∀vi},Φ= {φij |∀eij}

γk

γj

γi vi

vj vk

φki

φij

φjk

ljk
lij

lki
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Discrete Conformal Equivalence Metrics

Definition

Conformal Equivalence Two CP metrics (T1,Γ1,Φ1) and
(T2,Γ2,Φ2) are conformal equivalent, if they satisfy the following
conditions

T1 = T2 and Φ1 =Φ2.
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Power Circle

Definition (Power Circle)

The unit circle orthogonal to
three circles at the vertices
(vi ,γi), (vj ,γj ) and (vk ,γk ) is
called the power circle. The
center is called the power
center. The distance from the
power center to three edges
are denoted as hi ,hj ,hk

respectively.

vi vj

vk

li

lk

lj

�i

�k

�j

�jk
�ki

�ij

o

ℎk

ℎi

ℎj

David Gu Discrete Surface Ricci Flow



Derivative cosine law

Theorem (Symmetry)

dθi

duj
=

dθj

dui
=

hk

lk
dθj

duk
=

dθk

duj
=

hi

li
dθk

dui
=

dθi

duk
=

hj

lj

Therefore the differential 1-form
ω = θidui +θjduj +θkduk is
closed.

vi vj

vk

li

lk

lj

�i

�k

�j

�jk
�ki

�ij

o

ℎk

ℎi

ℎj
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Discrete Ricci Energy

Definition (Discrete Ricci Energy)

The functional associated with a CP metric on a triangle is

E(u) =
∫ (ui ,uj ,uk )

(0,0,0)
θi(u)dui +θj(u)duj +θk (u)duk .

Geometrical interpretation: the volume of a truncated
hyperbolic hyper-ideal tetrahedron.

vi vj

vk

li

lk

lj

�i

�k

�j

�jk
�ki

�ij

o

ℎk

ℎi

ℎj
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Generalized Circle Packing/Pattern

Definition (Tangential Circle Packing)

l2ij = γ2
i + γ2

j +2γiγj .

vi vj

vk

wk

wi
wj

dij dji

djk

dkjdki

dik

o

hk

hi

hj

ri rj

rk

Ci Cj

Ck

C0
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Generalized Circle Packing/Pattern

Definition (Inversive Distance Circle Packing)

l2ij = γ2
i + γ2

j +2γiγjηij .

where ηij > 1.

vi vj

vk

Ci
Cj

Ck

C0

o

dij dji

lij

hk

wk

wi
wj

djk

dkj

dik

dki

hi

hj

θjθi

θk

τij τij

τjk

τjk

τik

τik
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Generalized Circle Packing/Pattern

Definition (Discrete Yamabe Flow)

l2ij = 2γiγjηij .

where ηij > 0.

vi vj

vk

C0

o

dij dji

dkj

djk

dki

dik

wk

wiwj

hk

hj hi

τkj

τkj

τijτij

τik

τik

θk

θi θj
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Voronoi Diagram

Definition (Voronoi Diagram)

Given p1, · · · ,pk in R
n, the Voronoi cell

Wi at pi is

Wi = {x||x −pi |2 ≤ |x −pj|2,∀j}.

The dual triangulation to the Voronoi
diagram is called the Delaunay
triangulation.
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Power Distance

Power Distance

Given p i associated with
a sphere (p i , ri) the
power distance from
q ∈ R

n to p i is

pow(p i ,q)= |p i −q|2−r2
i .

pi
q

pow(pi, q) ri
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Power Diagram

Definition (Power Diagram)

Given p1, · · · ,pk in R
n and sphere

radii γ1, · · · ,γk , the power Voronoi
cell Wi at pi is

Wi = {x|Pow(x,pi)≤Pow(x,pj),∀j}.

The dual triangulation to Power
diagram is called the Power
Delaunay triangulation.
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Voronoi Diagram Delaunay Triangulation

Definition (Voronoi Diagram)

Let (S,V ) be a punctured surface,
V is the vertex set. d is a flat cone
metric, where the cone
singularities are at the vertices.
The Voronoi diagram is a cell
decomposition of the surface,
Voronoi cell Wi at vi is

Wi = {p ∈ S|d(p,vi)≤ d(p,vj),∀j}.

The dual triangulation to the
voronoi diagram is called the
Delaunay triangulation.
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Power Voronoi Diagram Delaunay Triangulation

Definition (Power Diagram)

Let (S,V ) be a punctured surface,
with a generalized circle packing
metric. The Power diagram is a cell
decomposition of the surface, a Power
cell Wi at vi is

Wi = {p ∈S|Pow(p,vi)≤Pow(p,vj),∀j}.

The dual triangulation to the power
diagram is called the power Delaunay
triangulation.
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Edge Weight

Definition (Edge Weight)

(S,V ,d), d a generalized CP metric. D the Power diagram, T
the Power Delaunay triangulation. ∀e ∈ D, the dual edge ē ∈ T ,
the weight

w(e) =
|e|
|ē| .
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Discrete Surface Ricci Flow
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Discrete Conformal Factor

Conformal Factor

Defined on each vertex u : V → R,

ui =







logγi R
2

logtanh γi
2 H

2

logtan γi
2 S

2
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Discrete Surface Ricci Flow

Definition (Discrete Surface Ricci Flow with Surgery)

Suppose (S,V ,d) is a triangle mesh with a generalized CP
metric, the discrete surface Ricci flow is given by

dui

dt
= K̄i −Ki ,

where K̄i is the target curvature. Furthermore, during the flow,
the Triangulation preserves to be Power Delaunay.

Theorem (Exponential Convergence)

The flow converges to the target curvature Ki(∞) = K̄i .
Furthermore, there exists c1,c2 > 0, such that

|Ki(t)−Ki(∞)|< c1e−c2t , |ui(t)−ui(∞)|< c1e−c2t ,
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Discrete Conformal Metric Deformation

Properties

Symmetry
∂Ki

∂uj
=

∂Kj

∂ui
=−wij

Discrete Laplace Equation

dKi = ∑
[vi ,vj ]∈E

wij(dui −duj)

namely
dK =∆du,
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Discrete Laplace-Beltrami operator

Definition (Laplace-Beltrami operator)

∆ is the discrete Lapalce-Beltrami operator, ∆= (dij), where

dij =







∑k wik i = j
−wij i 6= j , [vi ,vj ] ∈ E
0 otherwise

Lemma

Given (S,V ,d) with generalized CP metric, if T is the Power
Delaunay triangulation, then ∆ is positive definite on the linear
space ∑i ui = 0.

Because ∆ is diagonal dominant.
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Discrete Surface Ricci Energy

Definition (Discrete Surface Ricci Energy)

Suppose (S,V ,d) is a triangle mesh with a generalized CP
metric, the discrete surface energy is defined as

E(u) =
∫ u

0

k

∑
i=1

(K̄i −Ki)dui .

1 gradient ∇E = K̄−K,
2 Hessian

(

∂ 2E
∂ui∂uj

)

=∆,

3 Ricci flow is the gradient flow of the Ricci energy,
4 Ricci energy is concave, the solution is the unique global

maximal point, which can be obtained by Newton’s method.
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Algorithm

Input: a closed triangle mesh M, target curvature K̄ , step length
δ , threshold ε
Output:a PL metric conformal to the original metric, realizing K̄ .

1 Initialize ui = 0, ∀vi ∈ V .
2 compute edge length, corner angle, discrete curvature Ki

3 update to Delaunay triangulation by edge swap
4 compute edge weight wij .
5 u+= δ∆−1(K̄ −K)

6 normalize u such that the mean of ui ’s is 0.
7 repeat step 2 through 6, until the max |K̄i −Ki |< ε .
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Genus One Example
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Hyperbolic Discrete Surface Yamabe Flow

Discrete conformal metric deformation:

l1

l2
l3

u1

u2

u3

y1

y2y3

θ1

θ2

θ3

conformal factor
yk
2 = eui lk

2 euj R
2

sinh yk
2 = eui sinh lk

2 euj H
2

sin yk
2 = eui sin lk

2 euj S
2

Properties: ∂Ki
∂uj

=
∂Kj
∂ui

and dK =∆du.
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Hyperbolic Discrete Surface Yamabe Flow

Unified framework for both Discrete Ricci flow and Yamabe flow

Curvature flow
du
dt

= K̄ −K ,

Energy

E(u) =
∫

∑
i

(K̄i −Ki)dui ,

Hessian of E denoted as ∆,

dK =∆du.
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Genus Two Example
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Genus Three Example
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Existence Theorem
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Delaunay Triangulation

Definition (Delaunay Triangulation)

Each PL metric d on (S,V ) has a Delaunay triangulation T ,
such that for each edge e of T ,

a+a′ ≤ π,

a

a
′

e

It is the dual of Voronoi decomposition of (S,V ,d)

R(vi) = {x |d(x ,vj)≤ d(x ,vj) for all vj}

David Gu Discrete Surface Ricci Flow



Discrete Conformality

Definition (Conformal change)

Conformal factor u : V → R. Discrete conformal change is
vertex scaling.

l1

l2
l3

u1

u2

u3

vertex scaling

e
u2l1e

u3

e
u3l2e

u1e
u1l3e

u2

proposed by physicists Rocek and Williams in 1984 in the
Lorenzian setting. Luo discovered a variational principle
associated to it in 2004.
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Discrete Yamabe Flow

Definition (Discrete Yamabe Flow)

The discrete conformal factor deforms proportional to the
difference between the target curvature and the current
curvature

du(vi)

dt
= K̄ (vi)−K (vi),

the triangulation is updated to be Delaunay during the flow.
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Discrete Conformality

Definition (Discrete Conformal Equivalence)

PL metrics d ,d ′ on (S,V ) are discrete conformal,

d ∼ d ′

if there is a sequence d = d1,d2, · · · ,dk = d ′ and T1,T2, · · · ,Tk

on (S,V ), such that
1 Ti is Delaunay in di

2 if Ti 6= Ti+1, then (S,di)∼= (S,di+1) by an isometry
homotopic to id

3 if Ti = Ti+1, ∃u : V → R, such that ∀ edge e = [vi ,vj ],

ldi+1
(e) = eu(vi )ldi

eu(vj )
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Discrete Conformality

Discrete conformal metrics

a
b

c
v

v

ka
kb

kc
w

kc

y

x

mkc

my

mx w

diagonal switchvertex scale vertex scale
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Main Theorem

Theorem (Gu-Luo-Sun-Wu (2013))

∀ PL metrics d on closed (S,V ) and ∀K̄ : V → (−∞,2π), such
that ∑ K̄ (v) = 2πχ(S), ∃ a PL metric d̄ , unique up to scaling on
(S,V ), such that

1 d̄ is discrete conformal to d
2 The discrete curvature of d̄ is K̄ .

Furthermore, d̄ can be found from d from a discrete curvature
flow.

Remark

K̄ = 2πχ(S)
|V | , discrete uniformization.
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Main Theorem

1 The uniqueness of the solution is
obtained by the convexity of
discrete surface Ricci energy and
the convexity of the admissible
conformal factor space (u-space).

2 The existence is given by the
equivalence between PL metrics
on (S,V ) and the decorated
hyperbolic metrics on (S,V ) and
the Ptolemy identity.

X. Gu, F. Luo, J. Sun, T.
Wu, ”A discrete
uniformization theorem
for polyhedral surfaces”,
Journal of Differential
Geometry, Volume 109,
Number 2 (2018),
223-256.
(arXiv:1309.4175).
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PL Metric Teichmüller Space
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PL Metric Teichmüller Space

Definition (Marked Surface)

Suppose Σ is a closed topological surface,
V = {v1,v2, . . . ,vn} ⊂Σ is a set of disjoint points on Σ, satisfying
χ(Σ−V )< 0.

Definition (Metric Equivalence)

Two polyhedral metrics d and d ′ are equivalent, if there is an
isometric transformation h : (Σ,V ,d)→ (Σ,V ,d ′), h is
homotopic to the identity of the marked surface (Σ,V ).

Definition (PL Teichmüller Space)

All the equivalence classes of the PL metrics on the marked
surface (Σ,V ) consist the Teichmüller space

TPL(Σ,V ) := {d |polyhedralmetricon(Σ,V )}/{isometry ∼ id(Σ,V )}.
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PL Teichmüller Space

Definition (Local Chart for PL Teichmüller Space)

Assume T is a triangulation of (Σ,V ), the edge length function
determines a unique PL metric,

ΦT : R
E(T )
△ → TPL(Σ,V ),

this gives a local coordinates of the PL Teichmüller space,
where the domain

R
E(T )
△ =

{

x ∈ R
E(T )
>0 |∀∆= {ei ,ej ,ek},x(ei )+x(ej)> x(ek )

}

is a convex set. We use PT to represent the image of ΦT ,
then (PT ,Φ−1

T
) form a local chart of TPL(Σ,V ).
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PL Teichmüller Space

Definition (Atlas of PL metric Teichmüller Space)

Given a closed marked surface (Σ,V ),the atlas of TPL(Σ,V )
consists of all local charts (PT ,Φ−1

T
), where T exhaust all

possible triangulations,

A (Tpl(S,V )) =
⋃

T

(PT ,Φ−1
T

).

From |V |+ |F |− |E |= 2−2g and 3|F |= 2|E |, we obtain
|E |= 6g−6+3|V |.

Theorem (Troyanov)

Given a closed marked surface (Σ,V ), the PL metric
Teichmüller space TPL(Σ,V ) and the Euclidean space
R

6g−6+3|V | is diffeomorphic.
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Complete Hyperbolic Metric Teichmüller
Space
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Poincare Disk Model

The unit disk is with hyperbolic Riemannian metric

ds2 =
4|dz|2

(1−|z|2)2 ,

Figure: Hyperbolic geodesics in the Poincare model.
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Upper Half Plane Model

The upper half plane is with hyperbolic Riemannian metric

ds2 =
dx2 +dy2

y2 ,

0 1a b c

f

∞

Figure: All hyperbolic ideal triangles are isometric¡$
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Hyperbolic Ideal Quadrilateral

Definition (Thurston’s Shear Coordinates)

Given an ideal quadrilateral, Thurston’s shear coordinates
equal to the oriented distance from L to R along the diagonal.

B L̃ A R̃

L

R

δ

0−1 t

∞

L

R

Figure: Hyperbolic Ideal Quadrilateral.
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Hyperbolic Ideal Quadrilateral

Definition (Thurston’s Shear Coordinates)

Given an ideal quadrilateral, Thurston’s shear coordinates
equal to the oriented distance from L to R along the diagonal.

B L̃ A R̃

L

R

δ

0−1 t

∞

L

R

Figure: Hyperbolic Ideal Quadrilateral.
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Construction of Hyperbolic Metric

Assume a genus g surface with n vertices removed,
Σ= Σg −{v1,v2, . . . ,vn},n ≥ 1,χ(Σ)< 0,(Σ,T ) is a
triangulation. Given a function defined on edges, x : E(T )→R,
construct a hyperbolic structure π(X )

1 for every triangle ∆ ∈ T , construct a hyperbolic ideal
triangle, ∆→∆∗;

2 for every edge e ∈ E(T ), adjacent to two faces
∆1 ∩∆2 = e, glue two ideal triangles ∆∗

1
o Í∆∗

2 along e
isometrically, the shear coordinates on e equals to x(e).

∆1

∆2

e

∆∗

1

∆∗

2

x(e)

∆∗

1

∆∗

2

Figure: Construction of a complete metric.
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Ideal Triangulation

Lemma

If π(x) is a complete metric with finite area, namely each vertex
becomes a cusp, then for each v ∈ {v1,v2, . . . ,vn},

∑
e∼v

x(e) = 0.

e1 e2 e3 e1

x2

x3

x1

z z
′

0 1

v

e1

e2

e3

Figure: Condition for complete hyperbolic metric.
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Hyperbolic Structure

Define linear space:

R
E
P =

{

x ∈ R
E |∀v ∈ V , ∑

v∼e
x(e) = 0

}

Theorem (Thurston)

The mapping
ΦT : RE

P → T (Σ),x 7→ [π(x)]

is injective and surjective, ΦT (x) under T has shear
coordinates x(e).

v1

(Σ, T ) v1

v2
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Hyperbolic Teichmüller Space

Definition (Complete Hyperbolic Metric Teichmüller Space)

Given a closed marked surface (Σ,V ) with genus g,
χ(Σ−V )< 0, all the complete hyperbolic metrics defined on
Σ−V with finite area, and each v ∈ V being a cusp, form the
hyperbolic metric Teichmüller space of Σ−V , denoted as
TH(Σ,V ).

From |V |+ |F |− |E |= 2−2g and 3|F |= 2|E |, we obtain
|E |= 6g−6+3|V |. The cusp condition removes |V | freedoms.

Corollary

The hyperbolic metric Teichmüller SpaceT (Σ,V ) is a real
analytic manifold, diffeomorphic to R

6g−6+2|V |, where g is the
genus of the closed surface Σ.
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Complete Hyperbolic Teichmüller Space

Definition (Complete Hyperbolic Metric Equivalence)

Two complete hyperbolic metrics h and h′ on a closed marked
surface (Σ,V ) with finite total area are equivalent, if there is an
isometric transformation

h : (Σ−V ,h)→ (Σ−V ,d′),

furthermore h is homotopic to the identity map of Σ−V .

Definition (Complete Hyperbolic Teichmüller Space)

Given a closed marked surface (Σ,V ), χ(Σ−V )< 0, all the
equivalence classes of the complete hyperbolic metrics with
finite area on (Σ,V ) form the Teichmüller space:

TH(Σ−V )= {h|hcompelete,finitearea}/{isometry∼ idof (Σ−V )}
(4)
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Complete Hyperbolic Metric Teichmüller Space

Definition (Local Chart of TH(Σ−V ))

Assume T is a triangulation of (Σ,V ), its shear coordinates
determines a unique complete hyperbolic metric with finite area,

ΘT : ΩT → TH(Σ−V ) (5)

this gives a local chart of the Teichmüller space, where the
domain ΩT is a sublinear space in R

E(T ), satisfying the cusp
conditions. Then (ΩT ,Θ−1

T
) form a local chart of TH(Σ−V ).

Definition (Atlas of TH(Σ−V ))

Each triangulation T of (Σ,V ) corresponds to a local chart
(ΩT ,Θ−1

T
). By exhausting all possible triangulations, the union

of all local charts gives the atlas of TH(Σ−V ):

A (TH(Σ−V )) =
⋃

T

(

ΩT ,Θ−1
T

)

.
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Decorated Hyperbolic Metric Teichmüller
Space
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Decorated Ideal Hyperbolic Triangle

τ is a decorated ideal hyperbolic triangle, three infinite vertices
are v1,v2,v3 ∈ ∂H2. Each vi is associated with a horoball Hi ,
the length of ∂Hi ∩ τ is αi ; the oriented length of ei is li : if
Hj ∩Hk = /0 then li > 0, otherwise li < 0. Penner’s λ -length Li is
defined as

Li := e
1
2 li .

li

ljlk

αi

αj
αk

li

ljlk αi

αj
αk

Figure: Decorated ideal hyperbolic triangle, left frame li > 0, right
frame li < 0.
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Decorated Hyperbolic Metric

Definition (Decorated Hyperbolic Metric)

A decorated hyperbolic metric on a marked closed surface
(Σ,V ) is represented as (d ,w):

1 d is a complete, with finite area hyperbolic metric;
2 each cusp vi is associated with a haroball Hi . The center of

Hi is vi , the length of ∂Hi is wi . w = (w1,w2, . . . ,wn) ∈R
n
>0

vi

vj

Hi

Hj

∂Hi

∂Hj

Ui

Uj

Figure: Decorated hyperbolic metric.
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Decorated Hyperbolic Metric Tecihmüller Space

Definition (Decorated Hyperbolic Metric Equivalence)

Two decorated hyperbolic metric (d1,w1) and (d2,w2) on (Σ,V )
are equivalent, if there is an isometric transformation h between
them, h preserves all the horoballs and is isotopic to the identity
map of Σ−V .

Definition (Decorated Hyperbolic Metric Teichmüller Space)

Given a closed marked surface (Σ,V ), χ(S−V )< 0, the
decorated hyperbolic metric Teichmüller space of (Σ,V ) is
defined as

TD(Σ,V ) :=
{(d ,w)|decorated hyperbolic metric}

{isometry homotopic to id, preserves horoballs}
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Mappings Among Teichmüller Spaces
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Relation between Teichmüller Spaces

Theorem

Given a closed marked surface (Σ,V ), χ(Σ−V )< 0, the
decorated hyperbolic metric Teichmüller space and the
complete hyperbolic metric Tecihmüller space has the relation:

TD(Σ,V ) = TH(Σ,V )×R
|V |>0.

where R
|V |>0 represents the length of the decoration ∂Hi .
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Euclidean Metric to Decorated Hyperbolic Metric

Fix a triangulation T of (Σ,V ), construct a mapping between
the local charts determined by T ,

ΦT : TPL(Σ,V )→ TD(Σ,V ),x(e) 7→ 2lnx(e).

2 lnx(e)
x(e)

iso

ϕ

Figure: Euclidean metric to decorated hyperbolic metric.
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Euclidean Metric to Complete Hyperbolic Metric

Definition (Cross Ratio)

Given a marked surface with a PL metric and a triangulation
(Σ,d,T ), for a pair of adjacent faces{A,C,B} o Í{A,B,D}
sharing the edge {A,B}, the cross ratio on the common edge is
defined as:

Cr({A,B}) := aa′

bb′ ,

where a,a′,b,b′ are the lengths of the edges
{A,C},{B,D},{B,C},{A,D} under the PL metric d.

B

A

C

D
a

a′
b

b′

c

Figure: Length cross ratio.
David Gu Discrete Surface Ricci Flow



Euclidean Metric to Complete Hyperbolic Metric

Length cross ratio of (Σ,V ,d ,T ) satisfies the cusp condition,
hence we can construct a mapping ΨT : TPL(Σ,V )→ TH(Σ,V ),
such that the shear coordinates of the complete hyperbolic
metric equals to the length cross ratio of the PL metric.

∆1

∆2

e

∆∗

1

∆∗

2

x(e)

∆∗

1

∆∗

2

Figure: Euclidean metric to complete hyperbolic metric.
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Consistency among the transformations

vi

vl

vk

vj

vivk vl

vj

Hj

Hk Hi Hl

yj

yk

yl

yi

pk

pl

a

α

b

β

c

Figure: Cross ratio, Penner’s λ length,shear coordinates.

Fix a triangulation T ,

TPL(Σ,V )
Cr−−−−→ TPL(Σ,V )





y

ΦT





y

ΨT

TD(Σ,V )
Sh−−−−→ TH(Σ,V )

The above diagram commutes.
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Euclidean Delaunay Triangulation

x1

x3

x0

x2

x4

α

α
′

Figure: Euclidean Delaunay triangulation.

Definition (Euclidean Delaunay Triangulation)

Given a marked surface with a PL metric (Σ,V ,d), Delaunay
triangulation T satisfies condition, for all edges α +α ′ ≤ π.
Equivalently cosα +cosα ′ ≥ 0,

x2
1 +x2

2 −x2
0

2x1x2
+

x2
3 +x2

4 −x2
0

2x3x4
≥ 0. (6)
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Decorated Hyperbolic Delaunay Triangulation

x1

x3

x0

x2

x4

α

α
′

x2
x4

x3
x1

x0α
α′

β β′

γ
γ′

Figure: Delaunay triangulations.

Lemma

The transformation ΦT : TPL(Σ,V )→ TD(Σ,V ) preserves
Delaunay triangulations.

Since both situations:
x2

1 +x2
2 −x2

0

2x1x2
+

x2
3 +x2

4 −x2
0

2x3x4
≥ 0. (7)
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Ptolemy Conditions

A
B

A′

B′

C

C ′

A
B

A′
B′

C

C ′

α

β

Figure: Ptolemy conditions.

Let A,A′,B,B′,C,C′ are edge lengths of the Euclidean
quadrilateral and the Penner’s λ -length of the decorated
hyperbolic ideal quarilateral, then both of them satisfy the
Ptolemy conditions:

CC′ = AA′+BB′.
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Global defined mapping

The mapping ΦT : TPL(Σ,V )→ TD(Σ,V ) is defined on each
local chart, by Tolemy condition. By Ptolemy condition, all the
locally defined mappings ΦT can be glued together to form a
global map

Φ : TPL(Σ,V )→ TD(Σ,V ),

Ptolemy condition shows that the global mapping is continuous.
Further computation shows that Φ is globally C1.
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Global Mapping

Define the cell decomposition of the Teichmüller spaces

TPL(Σ,V ) =
⋃

T

CPL(T )

where

CPL(T ) := {[d ] ∈ TPL|T is Delaunay underd}.

Similarly
TD(Σ,V ) =

⋃

T

CD(T )

where

CD(T ) := {[d ] ∈ TD|T is Delaunay underd}.

Inside the cells, the mapping ΦT : CPL(T )→ CD(T ) is a
diffeomorphism.
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Global Mapping

On the boundary of the cells, restricted on CPL(T )∩CPL(T
′),

where four points are cocircle,

CPL(T )
Euclidean Ptolemy−−−−−−−−−−−→ CPL(T

′)




y

ΦT





y

Φ
T ′

CD(T )
Hyperbolic Ptolemy−−−−−−−−−−−→ CD(T

′)

Furthermore,

CPL(T )
Euclidean Ptolemy−−−−−−−−−−−→ CPL(T

′)




y

∇ΦT





y

∇Φ
T ′

CD(T )
Hyperbolic Ptolemy−−−−−−−−−−−→ CD(T

′)

the diagram commutes. So the piecewise diffeomorphism ΦT

can be glued together to form a global C1 map:

Φ : TPL(Σ,V )→ TD(Σ,V ).
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Existence of Solution to Discrete Surface
Ricci Flow
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Existence Proof

Domain Ωu is the space of discrete conformal factor,

Ωu = R
n ∩

{

u|
n

∑
i=1

ui = 0
}

.

The range ΩK is the space of discrete curvatures,

ΩK =

{

K ∈ (−∞,2π)n|
n

∑
i=1

Ki = 2πχ(S)

}

both of them are open sets in R
|V |−1. The global mapping is

F : Ωu
exp−−→ {p}×R

|V |
>0 → TD(Σ,V )

Φ−1

−−→ TPL(Σ,V )
K−→ ΩK
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Existence Proof

The global mapping is C1,

F : Ωu
exp−−→ {p}×R

|V |
>0 → TD(Σ,V )

Φ−1

−−→ TPL(Σ,V )
K−→ ΩK

During the flow, the triangulation is always Delaunay, the
cotangent edge weight is non-negative, the discrete
Laplace-Beltrami matrix is strictly positive definite. Hence the
Hessian matrix of the energy

E(u) =
∫ u n

∑
i=1

Kidui

is strictly convex. F is the gradient map of the energy,

F (u) = ∇E(u),

because Ωu is convex, the mapping is a diffeomorphism.
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Convergence of Solutions to Discrete
Surface Ricci Flow
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Convergence Proof

Definition (δ triangulation)

Given a compact polyhedral surface (Σ,V ,d), a triangulation T

is a δ -triangulation, δ > 0, if all the inner angles are in the
interval (δ , π

2 −δ ).

Definition ((δ ,c)-triangulation)

Given a compact triangulated polyhedral surface (S,T , l∗), a
geometric subdivision sequence (Tn, l∗n) is a (δ ,c) subdivision
sequence, δ > 0, c > 0, if each (Tn, l∗n) is a δ triangulation, and
the edge lengths satisfy

l∗ne ∈ (
1
cn

,
c
n
),∀e ∈ E(Tn)

Polyhedral surface can be replaced by a surface with a
Riemannian metric, triangulation can be replaced by geodesic
triangulation, then we obtain (δ ,c) geodesic subdivision
sequence. David Gu Discrete Surface Ricci Flow



Convergence Proof

Theorem (Discrete Surface Ricci Flow Convergence)

Given a simply connected Riemannian surface (S,g) with a
single boundary, the inner angles at the three corners are π

3 .
Given a (δ ,c) geodesic subdivision sequence (Tn,Ln), for any
edge e ∈ E(Tn), Ln(e) is the geodesic length under the metric
g. There exists discrete conformal factor wn ∈ R

V (Tn), such that
for large enough n, Cn = (S,Tn,wn ∗Ln) satisfies

a. Cn is isometric to a planar equilateral triangle △,
and Cn is a δS/2-triangulation

b. discrete uniformizations map ϕn : Cn →△
converge to the smooth uniformization map
ϕ : (S,g)→ (△,dzdz̄) uniformly, such that

lim
n→∞

‖ ϕn|V (Tn)−ϕ |V (Tn) ‖∞= 0.
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Computational Algorithms
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Topological Quadrilateral
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Topological Quadrilateral

p1 p2

p3p4

Figure: Topological quadrilateral.
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Topological Quadrilateral

Definition (Topological Quadrilateral)

Suppose S is a surface of genus zero with a single boundary,
and four marked boundary points {p1,p2,p3,p4} sorted
counter-clock-wisely. Then S is called a topological
quadrilateral, and denoted as Q(p1,p2,p3,p4).

Theorem

Suppose Q(p1,p2,p3,p4) is a topological quadrilateral with a
Riemannian metric g, then there exists a unique conformal map
φ : S → C, such that φ maps Q to a rectangle, φ(p1) = 0,
φ(p2) = 1. The height of the image rectangle is the conformal
module of the surface.
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Algorithm: Topological Quadrilateral

Input: A topological quadrilateral M
Output: Conformal mapping from M to a planar rectangle
φ : M → D

1 Set the target curvatures at corners {p0,p1,p2,p3} to be π
2 ,

2 Set the target curvatures to be 0 everywhere else,
3 Run ricci flow to get the target conformal metric ū,
4 Isometrically embed the surface using the target metric.
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Topological Annulus
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Topological Annulus

Figure: Topological annulus.

David Gu Discrete Surface Ricci Flow



Topological Annulus

Definition (Topological Annulus)

Suppose S is a surface of genus zero with two boundaries, the
S is called a topological annulus.

Theorem

Suppose S is a topological annulus with a Riemannian metric
g, the boundary of S are two loops ∂S = γ1 − γ2, then there
exists a conformal mapping φ : S → C, which maps S to the
canonical annulus, φ(γ1) is the unit circle, φ(γ2) is another
concentric circle with radius γ . Then − logγ is the conformal
module of S. The mapping φ is unique up to a planar rotation.
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Algorithm: Topological Annulus

Input: A topological annulus M, ∂M = γ0 − γ1

Output: a conformal mapping from the surface to a planar
annulus φ : M → A

1 Set the target curvature to be 0 every where,
2 Run Ricci flow to get the target metric,
3 Find the shortest path γ2 connecting γ0 and γ1, slice M

along γ2 to obtain M̄,
4 Isometrically embed M̄ to the plane, further transform it to

a flat annulus

{z|r ≤ Re(z)≤ 0}/{z → z +2k
√
−1π}

by planar translation and scaling,
5 Compute the exponential map z → exp(z), maps the flat

annulus to a canonical annulus.
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Riemann Mapping
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Conformal Module

Simply Connected Domains
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Topological Disk

Definition (Topological Disk)

Suppose S is a surface of genus zero with one boundary, the S
is called a topological disk.

Theorem

Suppose S is a topological disk with a Riemannian metric g,
then there exists a conformal mapping φ : S → C, which maps
S to the canonical disk. The mapping φ is unique up to a
Möbius transformation,

z → eiθ z −z0

1− z̄0z
.
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Algorithm: Topological Disk

Input: A topological disk M, an interior point p ∈ M
Output: Riemann mapping φ : M → mathbbD, maps M to the
unit disk and p to the origin

1 Punch a small hole at p in the mesh M,
2 Use the algorithm for topological annulus to compute the

conformal mapping.
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Multiply connected domains
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Multiply-Connected Annulus

Definition (Multiply-Connected Annulus)

Suppose S is a surface of genus zero with multiple boundaries,
then S is called a multiply connected annulus.

Theorem

Suppose S is a multiply connected annulus with a Riemannian
metric g, then there exists a conformal mapping φ : S → C,
which maps S to the unit disk with circular holes. The radii and
the centers of the inner circles are the conformal module of S.
Such kind of conformal mapping are unique up to Möbius
transformations.
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Algorithm: Multiply-Connected Annulus

Input: A multiply-connected annulus M,

∂M = γ0 − γ1, · · · ,γn.

Output: a conformal mapping φ : M → A, A is a circle domain.
1 Fill all the interior holes γ1 to γn

2 Punch a hole at γk , 1 ≤ k ≤ n
3 Conformally map the annulus to a planar canonical

annulus
4 Fill the inner circular hole of the canonical annulus
5 Repeat step 2 through 4, each round choose different

interior boundary γk . The holes become rounder and
rounder, and converge to canonical circles.
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Koebe’s Iteration - I

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - II

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - III

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Convergence Analysis

Theorem (Gu and Luo 2009)

Suppose genus zero surface has n boundaries, then there
exists constants C1 > 0 and 0 < C2 < 1, for step k, for all z ∈ C,

|fk ◦ f−1(z)−z| < C1C
2[ k

n ]

2 ,

where f is the desired conformal mapping.

W. Zeng, X. Yin, M. Zhang, F. Luo and X. Gu, ”Generalized
Koebe’s method for conformal mapping multiply connected
domains”, Proceeding SPM’09 SIAM/ACM Joint Conference on
Geometric and Physical Modeling, Pages 89-100.
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Topological Torus
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Topological torus

Figure: Genus one closed surface.
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Algorithm: Topological Torus

Input: A topological torus M
Output: A conformal mapping which maps M to a flat torus
C/{m+nα |m,nZ}

1 Compute a basis for the fundamental group π1(M), {γ1,γ2}.
2 Slice the surface along γ1,γ2 to get a fundamental domain

M̄,
3 Set the target curvature to be 0 everywhere
4 Run Ricci flow to get the flat metric
5 Isometrically embed S̃ to the plane
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Hyperbolic Ricci Flow

Computational results for genus 2 and genus 3 surfaces.
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Hyperbolic Koebe’s Iteration

M. Zhang, Y. Li, W. Zeng and X. Gu. ”Canonical conformal
mapping for high genus surfaces with boundaries”, Computer
and Graphics, Vol 36, Issue 5, Pages 417-426, August 2012.
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Thanks

For more information, please email to
gu@cmsa.fas.harvard.edu.

Thank you!
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