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Collaborators

The work is collaborated with Shing-Tung Yau, Yalin Wang,
Feng Luo, Ronald Lok Ming Lui, Paul M. Thompson, Tony F.
Chan, Arie Kaufman, Hong Qin, Dimitris Samaras, Jie Gao and
many other mathematicians, computer scientists and doctors.
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Klein’s Program

Klein’s Erlangen Program

Different geometries study the invariants under different
transformation groups.

Geometries

@ Topology - homeomorphisms
@ Conformal Geometry - Conformal Transformations

@ Riemannian Geometry - Isometries
@ Differential Geometry - Rigid Motion
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Conformal geometry lays down the theoretic foundation for
@ Surface mapping
@ Geometry classification
@ Shape analysis

Applied in computer graphics, computer vision, geometric
modeling, wireless sensor networking and medical imaging,
and many other engineering, medical fields.
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History

@ In pure mathematics, conformal geometry is the
intersection of complex analysis, algebraic topology,
Riemann surface theory, algebraic curves, differential
geometry, partial differential equation.

@ In applied mathematics, computational complex function
theory has been developed, which focuses on the
conformal mapping between planar domains.

@ Recently, computational conformal geometry has been
developed, which focuses on the conformal mapping
between surfaces.
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History

Conventional conformal geometric method can only handle the
mappings among planar domains.

@ Applied in thin plate deformation (biharmonic equation)
@ Membrane vibration

@ Electro-magnetic field design (Laplace equation)
@ Fluid dynamics

@ Aerospace design
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Reasons for Booming

Data Acquisition

3D scanning technology becomes mature, it is easier to obtain
surface data.
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Reasons for Booming

Computational Power

Computational power has been increased tremendously. With
the incentive in graphics, GPU becomes mature, which makes
numerical methods for solving PDE’s much easier.
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Fundamental Problems

@ Given a Riemannian metric on a surface with an arbitrary
topology, determine the corresponding conformal structure.

@ Compute the complete conformal invariants (conformal
modules), which are the coordinates of the surface in the
Teichmuller shape space.

@ Fix the conformal structure, find the simplest Riemannian
metric among all possible Riemannian metrics

© Given desired Gaussian curvature, compute the
corresponding Riemannian metric.

@ Given the distortion between two conformal structures,
compute the quasi-conformal mapping.

©Q Compute the extremal quasi-conformal maps.

@ Conformal welding, glue surfaces with various conformal

modules, compute the conformal module of the glued
surface. )
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Complete Tools

Computational Conformal Geometry Library

@ Compute conformal mappings for surfaces with arbitrary
topologies

@ Compute conformal modules for surfaces with arbitrary
topologies

© Compute Riemannian metrics with prescribed curvatures

© Compute gquasi-conformal mappings by solving Beltrami
equation
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The theory, algorithms and sample code can be found in the
following books.

SPRINGER BRIEFS IN MATHEMATICS

Xianfeng David Gu

Ricci Flow for
Shape Analysis
and Surface
Registration
Theories, Algorithms
and Applications

Computational Conformal Variational Principles for
Geometry Discrete Surfaces

kg G G - ST o Theories and Algorithms

) Springer

You can find them in the book store.
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Source Code Library

Please email me gu@cmsa.fas.harvard.edu for updated code
library on computational conformal geometry.
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Conformal Mapping |
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biholomorphic Function

Definition (biholomorphic Function)

Suppose f : C — C is invertible, both f and f~* are holomorphic,
then then f is a biholomorphic function.

R 1
\\‘ Ry
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Conformal Map

S1 C{(Ua,¢a)}  S2C {(VﬁaTﬁ)}

= —<

The restriction of the mapping on each local chart is
biholomorphic, then the mapping is conformal.
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Conformal Mapping

David Gu Discrete Surface Ricci Flow



Conformal Geometry

Definition (Conformal Map)

Let @:(S1,91) — (S2,92) is a homeomorphism, @ is conformal
if and only if

¢'g2 =e?g;.

Conformal Mapping preserves angles.
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Conformal Mapping

Conformal maps Properties
Map a circle field on the surface to a circle field on the plane.
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asi-Conformal Map

Diffeomorphisms: maps ellipse field to circle field.
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Uniformization ]
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Conformal Canonical Representations
Theorem (Poincar € Uniformization Theorem)

Let (¥,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric § = e?*g conformal to g which has
constant Gauss curvature.
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Uniformization of Open Surfaces

Definition (Circle Domain)

A domain in the Riemann sphere C is called a circle domain if
every connected component of its boundary is either a circle or
a point.

Any domain Q in C, whose boundary dQ has at most countably
many components, is conformally homeomorphic to a circle
domain Q* in C. Moreover Q* is unique upto Mdbius
transformations, and every conformal automorphism of Q* is
the restriction of a Mobius transformation.
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Uniformization of Open Surfaces

Spherical Euclidean Hyperbolic
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Smooth Surface Ricci Flow ]
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface M with a ]
Riemannian metric g, a

local coordinate system é‘ll
(u,v) is an isothermal <
coordinate system, if

g = e UV)(du? 4 dv?). i
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Gaussian Curvature

Gaussian Curvature

Suppose § = e? g is a conformal metric on the surface, then
the Gaussian curvature on interior points are
K=—-AgA = = A
= —0gh = — 5 A4,
where ) )
7} 7}
A=—+—
ouZ " gv
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Conformal Metric Deformation

Suppose M is a surface with a
Riemannian metric,

9= < 011 Q12 >
021 022
Suppose A : ¥ —»Risa
function defined on the surface,
then e?) g is also a Riemannian

metric on X and called a

conformal metric. A is called
the conformal factor. Angles are invariant measured

by conformal metrics.

g — e?g

Conformal metric deformation.
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Curvature and Metric Relations

Yamabi Equation

Suppose § = e?' g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K=e2(K—-Agh),

geodesic curvature on the boundary

kg =€ (kg —dgnA).
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Uniformization

Theorem (Poincar € Uniformization Theorem)

Let (¥,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric § = e?*g conformal to g which has
constant Gauss curvature.
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Uniformization of Open Surfaces
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Surface Ricci Flow

Key ideas:
@ Conformal metric deformation

g — e?g

@ Ricci flow
dA
dt
@ Gaussian curvature K = —AgA, evolution equation

_K7

dK

= AgK +2K?2
dt gt

diffusion-reaction equation.
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Surface Ricci Flow

Definition (Normalized Hamilton’s Surface Ricci Flow)

A closed surface S with a Riemannian metric g, the Ricci flow
on it is defined as

dgj  [4mx(S)
d_tJ:< A0) ‘2K>g”‘

where x(S) is the Euler characteristic number of S, A(0) is the
initial total area.

The ricci flow preserves the total area during the flow, converge

to a metric with constant Gaussian curvature 4Z)((é)s).
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Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K) every where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K) every where.
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Discrete Surface )

David Gu Discrete Surface Ricci Flow



Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular

meshes.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular

meshes.
@ Isometric gluing of triangles in E2.
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Generic Surface Model - Triangular Mesh

meshes.

@ Surfaces are represented as polyhedron triangular

@ Isometric gluing of triangles in E2.

@ Isometric gluing of triangles in H?,S?.
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Discrete Generalization

© Discrete Riemannian Metric
@ Discrete Curvature

© Discrete Conformal Metric Deformation
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Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on
the vertices, | : E = {all edges} — R, satisfies triangular
inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} — R*.

K(v):2n—zai,v ZoM;K(v) = n—Zai,v € oM

Theorem (Discrete Gauss-Bonnet theorem)

> KV)+ > K(v)=2mx(M).

VoM veoM
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Discrete Metrics Determines the Curvatures

cosine laws
Ccos 6 + cos g cos 6
cosl sin 6 sin 6 @)
_ cosh 6 + cosh 6 cosh 6
coshli- = sinh § sinh 6 )
6 6

0 cos 6 .+ co§ ) COS B 3)

sin g sin 6

4
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Derivative cosine law

Lemma (Derivative Cosine Law)

Suppose corner angles are the
functions of edge lengths, then

%6 _ |k
ai A
26 _ d6
a_l,- = al COos 6,

where A = [l sin 6.
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Discrete Conformal Structure )
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Discrete Conformal Metric Deformation

Conformal maps Properties
@ transform infinitesimal circles to infinitesimal circles.

@ preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation
Replace infinitesimal circles by circles with finite radii.
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Discrete Conformal Metric Deformation vs CP
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Discrete Conformal Metric Defo
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Thurston’s Circle Packing Metric

Thurston’s CP Metric

We associate each vertex v;
with a circle with radius y. On

edge ej;, the two circles
intersect at the angle of ®;.

The edge lengths are
I7 = V2 + 7 + 21y cos P
CP Metric (T,I,®), T
triangulation,
F={ylwWi},®={qve;

}
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Discrete Conformal Equivalence Metrics

Definition

Conformal Equivalence Two CP metrics (T1,l1,$1) and

(T2,l2,®,) are conformal equivalent, if they satisfy the following
conditions

T, =Ts and ¢©; = d,.
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Power Circle

Definition (Power Circle)

The unit circle orthogonal to
three circles at the vertices
(Vi, %), (vj, %) and (vic, %) is
called the power circle. The
center is called the power
center. The distance from the
power center to three edges
are denoted as h;, h;, hy
respectively.
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Derivative cosine law

Theorem (Symmetry)

dg  d8 h
T odw
dg  de, _h
dug — duy
dg. _ dé
T odu

Therefore the differential 1-form
w=6du; + doUj + B¢duy is
closed.
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Discrete Ricci Energy

Definition (Discrete Ricci Energy)
The functional associated with a CP metric on a triangle is

(Ui,Uj,Uk)
E(u)= /(000) & (u)du; + 6 (u)du; + 6 (u)dug.

Geometrical interpretation: the volume of a truncated
hyperbolic hyper-ideal tetrahedron.
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Generalized Circle Packing/Pattern

Definition (Tangential Circle Packing)

17 = V2 + ¥+ 2yy.
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Generalized Circle Packing/Pattern

Definition (Inversive Distance Circle Packing)

IF = ¢ + ¥ +2uyn;.
where nj > 1.
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Generalized Circle Packing/Pattern

Definition (Discrete Yamabe Flow)
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Voronoi Diagram

Definition (Voronoi Diagram)

Given pq,---,pk in R", the Voronoi cell
W; at p; is

Wi = {x||x — pi|2 < |x — ;|2 V) }.

The dual triangulation to the Voronoi
diagram is called the Delaunay
triangulation.
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Power Distance

Power Distance

Given p; associated with
a sphere (p;,r;) the pow(pi, 9)
power distance from
geR"topjis

pow (pi,q) = |p; —q|?—r?.
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Definition (Power Diagram)

Given py,---,pk in R" and sphere
radii y1,- -, Y, the power Voronoi
cell W; at p; is

Wi = {X‘POW(vai) < POW(va])?vJ}

The dual triangulation to Power
diagram is called the Power
Delaunay triangulation.
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Voronoi Diagram Delaunay Triangulation

Definition (Voronoi Diagram)

Let (S,V) be a punctured surface,
V is the vertex set. d is a flat cone
metric, where the cone
singularities are at the vertices. .y :
The Voronoi diagram is a cell NS o
decomposition of the surface, & 353002050153 05C
Voronoi cell W; at v; is 7 4

The dual triangulation to the
voronoi diagram is called the
Delaunay triangulation.
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Power Voronoi Diagram Delaunay Triangulation

Definition (Power Diagram)

Let (S,V) be a punctured surface,
with a generalized circle packing
metric. The Power diagram is a cell e S
decomposition of the surface, a Power NS
cell W; at v; is S

Wi = {p € S|P0W(p7vi) < POW(p,Vj),Vj 1

The dual triangulation to the power
diagram is called the power Delaunay
triangulation.
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Edge Weight

Definition (Edge Weight)

(S,V,d), d a generalized CP metric. D the Power diagram, T
the Power Delaunay triangulation. Ve € D, the dualedge e € T,
the weight




Discrete Surface Ricci Flow ]
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Discrete Conformal Factor

Conformal Factor
Defined on each vertex u : V — R,

logy R?
uy=< logtanh¥  H?

logtan % S?
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Discrete Surface Ricci Flow
Definition (Discrete Surface Ricci Flow with Surgery)

Suppose (S,V,d) is a triangle mesh with a generalized CP
metric, the discrete surface Ricci flow is given by
dUi

EZRi—Ki,

where K; is the target curvature. Furthermore, during the flow,
the Triangulation preserves to be Power Delaunay.

Theorem (Exponential Convergence)

The flow converges to the target curvature K; (o) = K;.
Furthermore, there exists ¢;,¢, > 0, such that

|Ki(t) — Ki()| < cre ™%, Juj(t) — uj()| < cre ™2,
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Discrete Conformal Metric Deformation

@ Symmetry

an B dui B ”

@ Discrete Laplace Equation

dKi = Z Wij(dui —de)
[Vi,Vj cE

namely

dK = Adu,
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Discrete Laplace-Beltrami operator

Definition (Laplace-Beltrami operator)

A is the discrete Lapalce-Beltrami operator, A = (dij), where

> k Wik l Zj
dj=q —Wj i#p[vi,v]€E
0 otherwise

Lemma

Given (S,V,d) with generalized CP metric, if T is the Power
Delaunay triangulation, then A is positive definite on the linear
space y;u; =0.

Because A is diagonal dominant.
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Discrete Surface Ricci Energy
Definition (Discrete Surface Ricci Energy)

Suppose (S,V,d) is a triangle mesh with a generalized CP
metric, the discrete surface energy is defined as

u k
E(u):/o 3 (i~ K

© gradient OE =K — K,

@ Hessian
%E \ _ 5
duiduj -

© Ricci flow is the gradient flow of the Ricci energy,

© Ricci energy is concave, the solution is the unique global
maximal point, which can be obtained by Newton’s method.
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Algorithm

Input: a closed triangle mesh M, target curvature K, step length
d, threshold ¢ B
Output:a PL metric conformal to the original metric, realizing K.

© Initialize u; =0, Yv; € V.

@ compute edge length, corner angle, discrete curvature K;
© update to Delaunay triangulation by edge swap

@ compute edge weight w;;.

Q ut+=3A1K-K)

© normalize u such that the mean of u;’s is 0.

@ repeat step 2 through 6, until the max |K; — K| < €.

David Gu Discrete Surface Ricci Flow



Genus One Example

Discrete Surface



Hyperbolic Discrete Surface Yamabe Flow

Discrete conformal metric deformation:

Uy

conformal factor

% = e“i%e“i R2
sinh% = e%sinh 'ge“i H?
sinfs = elYsinkel §?

Properties: g—*lfji = Z—E and dK = Adu.
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Hyperbolic Discrete Surface Yamabe Flow

Unified framework for both Discrete Ricci flow and Yamabe flow
@ Curvature flow

du -
—=K-K
dt ’

@ Energy

E(u)= /Z(Ri —Ki)dui,

@ Hessian of E denoted as A,

dK = Adu.
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Genus Three Example




Existence Theorem )
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Delaunay Triangulation

Definition (Delaunay Triangulation)

Each PL metric d on (S,V) has a Delaunay triangulation T,
such that for each edge e of T,

at+a <m,

{L >

It is the dual of Voronoi decomposition of (S,V,d)

R(vi) = {x]d(x,v;) < d(x,v;) for all v;}
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Discrete Conformality

Definition (Conformal change)

Conformal factor u : V — R. Discrete conformal change is
vertex scaling.

uy
l,  vertex scaling ], ot ,
13 . € lze eus lge“'l
us
Uz I eliz] els

proposed by physicists Rocek and Williams in 1984 in the
Lorenzian setting. Luo discovered a variational principle
associated to it in 2004.
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Discrete Yamabe Flow

Definition (Discrete Yamabe Flow)

The discrete conformal factor deforms proportional to the
difference between the target curvature and the current
curvature

du(vi)
dat
the triangulation is updated to be Delaunay during the flow.

K(vi) —K(v),
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Discrete Conformality

Definition (Discrete Conformal Equivalence)
PL metrics d,d’ on (S,V) are discrete conformal,

d~d’

if there is a sequence d =d;,d,,--- ,dy =d’ and T1, T, -+, Ty
on (S,V), such that
© T, is Delaunay in d;
Q if T; # T4, then (S,d;) = (S,d; 1) by an isometry
homotopic to id
Q ifTy=Ti11, Ju:V — R, such that vV edge e = [v;,vj],

lg,,, (e) = !Mig e
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Discrete Conformality

Discrete conformal metrics

e mkc
@ w
—
Y my
vertex scale diagonal switch vertex scale
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Theorem (Gu-Luo-Sun-Wu (2013))

V PL metrics d on closed (S,V) and YR :V — (—,2m), such
that ¥ K(v) = 2mx(S), 3 a PL metric d, unique up to scaling on
(S,V), such that

© d is discrete conformal to d
@ The discrete curvature of d is K.

Furthermore, d can be found from d from a discrete curvature
flow.

K — 2"‘{(/(|S), discrete uniformization.
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© The uniqueness of the solution is
obtained by the convexity of
discrete surface Ricci energy and
the convexity of the admissible
conformal factor space (u-space).

@ The existence is given by the
equivalence between PL metrics
on (S,V) and the decorated
hyperbolic metrics on (S,V) and
the Ptolemy identity.

X. Gu, F Luo, J. Sun, T.
Wu, "A discrete
uniformization theorem
for polyhedral surfaces”,
Journal of Differential
Geometry, Volume 109,
Number 2 (2018),
223-256.
(arXiv:1309.4175).
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PL Metric Teichmuller Space ]
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PL Metric Teichmtiller Space

Definition (Marked Surface)

Suppose % is a closed topological surface,
V ={v1,Vv2,...,Vn} C X is a set of disjoint points on X, satisfying
x(X—-V)<o.

Definition (Metric Equivalence)

Two polyhedral metrics d and d’ are equivalent, if there is an
isometric transformation h: (X,V,d) — (X,V,d’), his
homotopic to the identity of the marked surface (X,V).

Definition (PL Teichmiiller Space)

All the equivalence classes of the PL metrics on the marked
surface (X,V) consist the Teichmiiller space

TpL(X,V) :={d|polyhedralmetricon(X,V)}/{isometry ~id(X,V)}.
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PL Teichmiller Space

Definition (Local Chart for PL Teichmiller Space)

Assume 7 is a triangulation of (X,V), the edge length function
determines a unique PL metric,

o, REY) 5 T (T,V),

this gives a local coordinates of the PL Teichmdller space,
where the domain

]Rii(g) = {x € Rzgg)\VA = {ei,gj,ex},x(e) +x(eg) >x(ek)}

is a convex set. We use &4 to represent the image of ¢ ,
then (@g,¢}1) form a local chart of Tp (X,V).
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PL Teichmiller Space

Definition (Atlas of PL metric Teichmiiller Space)

Given a closed marked surface (x,V),the atlas of Tp (X,V)
consists of all local charts (2, ,'), where 7 exhaust all
possible triangulations,

JZ7(TpI(S7V)) = U(L@g,d)}l).
T

From |V |+|F|—|E|=2—-2g and 3|F | = 2|E|, we obtain
|[E| =69 —6+3|V]|.

Theorem (Troyanov)

Given a closed marked surface (¥,V ), the PL metric
Teichmiller space Tp (X,V) and the Euclidean space
R69-6+3IVl is diffeomorphic.
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Complete Hyperbolic Metric Teichmiiller
Space
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Poincare Disk Model

The unit disk is with hyperbolic Riemannian metric

4|dz|?

2
0= APy

Figure: Hyperbolic geodesics in the Poincare model.
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Upper Half Plane Model

The upper half plane is with hyperbolic Riemannian metric

dx2 + dy?
2
dsc = T,

a b @ 0 1

Figure: All hyperbolic ideal triangles are isometrici$
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Hyperbolic Ideal Quadrilateral

Definition (Thurston’s Shear Coordinates)

Given an ideal quadrilateral, Thurston’s shear coordinates
equal to the oriented distance from L to R along the diagonal.

\\
\

Figure: Hyperbolic Ideal Quadrilateral.
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Hyperbolic Ideal Quadrilateral

Definition (Thurston’s Shear Coordinates)

Given an ideal quadrilateral, Thurston’s shear coordinates
equal to the oriented distance from L to R along the diagonal.

\\
\

Figure: Hyperbolic Ideal Quadrilateral.
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Construction of Hyperbolic Metric

Assume a genus g surface with n vertices removed,
Y=%g—{vi,Vo,...,Vn},n > 1, X(X) < 0,(X,.7) is a
triangulation. Given a function defined on edges, x : E(.7) — R,
construct a hyperbolic structure 1i(X)
© for every triangle A € .7, construct a hyperbolic ideal
triangle, A — A%,
©Q for every edge e € E(.7), adjacent to two faces
A1 N A, =e, glue two ideal triangles A}O'IAz along e
isometrically, the shear coordinates on e equals to x(e).

Figure: Construction of a complete metric.

David Gu Discrete Surface Ricci Flow



Ideal Triangulation

If (x) is a complete metric with finite area, namely each vertex
becomes a cusp, then for each v € {vy,Vz,...,vn},

z x(e)=0.

e~V

v

Figure: Condition for complete hyperbolic metric.
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Hyperbolic Structure

Define linear space:

RE = {x eERFW eV, S x(e):O}

v~e

Theorem (Thurston)

The mapping
&7 :RE — T(X),x — [11(x)]

is injective and surjective, ® (x) under .7 has shear
coordinates x(e).
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Hyperbolic Teichmuller Space

Definition (Complete Hyperbolic Metric Teichmdller Space)

Given a closed marked surface (¥,V) with genus g,
X(X—V) <0, all the complete hyperbolic metrics defined on
¥ —V with finite area, and each v € V being a cusp, form the
hyperbolic metric Teichmuller space of X —V, denoted as
Th(Z,V).

From |V |+|F|—|E|=2—-2g and 3|F| = 2|E|, we obtain
|E| =69 —6+3|V|. The cusp condition removes |V | freedoms.

The hyperbolic metric Teichmuller SpaceT (x,V) is a real
analytic manifold, diffeomorphic to R69-6+2\Vl where g is the
genus of the closed surface 2.
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Complete Hyperbolic Teichmtiller Space
Definition (Complete Hyperbolic Metric Equivalence)

Two complete hyperbolic metrics h and h’ on a closed marked
surface (X, V) with finite total area are equivalent, if there is an
isometric transformation

h:(X-V,h) > (Z-V,d),

furthermore h is homotopic to the identity map of X — V.

Definition (Complete Hyperbolic Teichmuller Space)

Given a closed marked surface (X,V), x(X —V) <0, all the
equivalence classes of the complete hyperbolic metrics with
finite area on (X, V) form the Teichmiiller space:

T (X —V)={h|hcompelete,finitearea} /{isometry ~idof (X —V )}
(4)
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Complete Hyperbolic Metric Teichmuller Space

Definition (Local Chart of Ty (X —V))

Assume .7 is a triangulation of (X,V), its shear coordinates
determines a unique complete hyperbolic metric with finite area,

@,7:99—>TH(Z—V) (5)

this gives a local chart of the Teichmiiller space, where the
domain Q. is a sublinear space in RE(Y), satisfying the cusp
conditions. Then (Q,07*) form a local chart of Ty (X — V).

-

Definition (Atlas of Ty (X —V))

Each triangulation .7 of (X,V) corresponds to a local chart
(Qy,@}l). By exhausting all possible triangulations, the union
of all local charts gives the atlas of Th(X —V):

A (Tu(Z—V)) :U<Qg,@}l>.
T
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Decorated Hyperbolic Metric Teichmdller
Space
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Decorated ldeal Hyperbolic Triangle

T is a decorated ideal hyperbolic triangle, three infinite vertices
are vi,Vy,v3 € dH2. Each v; is associated with a horoball H;,
the length of dH; N 1 is a;j; the oriented length of g; is |;: if
H;NH, = 0 then |, > 0, otherwise |; < 0. Penner’s A-length L; is
defined as

Figure: Decorated ideal hyperbolic triangle, left frame I; > 0, right
frame l; < 0.
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Decorated Hyperbolic Metric
Definition (Decorated Hyperbolic Metric)

A decorated hyperbolic metric on a marked closed surface
(X,V) is represented as (d,w):

@ d is a complete, with finite area hyperbolic metric;

@ each cusp v; is associated with a haroball H;. The center of
H; is v;, the length of dH; is w;. w = (W1,W>,...,wp) € RY,

H;

Figure: Decorated hyperbolic metric.
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Decorated Hyperbolic Metric Tecihmtiller Space

Definition (Decorated Hyperbolic Metric Equivalence)

Two decorated hyperbolic metric (d;,w;) and (d,,wz) on (X,V)
are equivalent, if there is an isometric transformation h between
them, h preserves all the horoballs and is isotopic to the identity
map of X — V.

Definition (Decorated Hyperbolic Metric Teichmuller Space)

Given a closed marked surface (X,V), x(S—V) <0, the
decorated hyperbolic metric Teichmuller space of (X,V) is
defined as

To(Z,V) = {(d,w)|decorated hyperbolic metric}
e {isometry homotopic to id, preserves horoballs}
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Mappings Among Teichmuiller Spaces |

David Gu Discrete Surface Ricci Flow



Relation between Teichmiiller Spaces

Theorem

Given a closed marked surface (X,V), x(X —V) <0, the
decorated hyperbolic metric Teichmiller space and the
complete hyperbolic metric Tecinmiller space has the relation:

To(T,V) =Th(Z,V) xRV 0.

where RIV |0 represents the length of the decoration dH;.
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Euclidean Metric to Decorated Hyperbolic Metric

Fix a triangulation .7 of (¥X,V ), construct a mapping between
the local charts determined by .7,

®5:Tp (X,V) = Tp(X,V),x(e) — 2Inx(e).

Figure: Euclidean metric to decorated hyperbolic metric.
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Euclidean Metric to Complete Hyperbolic Metric

Definition (Cross Ratio)

Given a marked surface with a PL metric and a,triangulation
(xX,d,7), for a pair of adjacent faces{A,C,B} °I{A,B,D}
sharing the edge {A,B}, the cross ratio on the common edge is
defined as:

!/

Cr({A,B}) := %

where a,a’,b,b’ are the lengths of the edges
{A,C},{B,D},{B,C},{A,D} under the PL metric d.

b

David Gu Discrete Surface Ricci Flow



Euclidean Metric to Complete Hyperbolic Metric

Length cross ratio of (X,V,d,.7) satisfies the cusp condition,
hence we can construct a mapping V. : Tp (X,V) — Tx(X,V),
such that the shear coordinates of the complete hyperbolic
metric equals to the length cross ratio of the PL metric.

Figure: Euclidean metric to complete hyperbolic metric.

David Gu Discrete Surface Ricci Flow



Consistency among the transformations

Figure: Cross ratio, Penner’s A length,shear coordinates.

Fix a triangulation .7,

TrL(Z.V) — TpL(E,V)

|- Rz

To(Z,V) — Th(Z,V)

The above diagram commutes.
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Euclidean Delaunay Triangulation

Figure: Euclidean Delaunay triangulation.

Definition (Euclidean Delaunay Triangulation)

Given a marked surface with a PL metric (X,V,d), Delaunay
triangulation .7 satisfies condition, for all edges a +a’ < .
Equivalently cosa +cosa’ > 0,

2 2 2 2 2 2
X5+ X5 —X X5 +X7—X
1 2 0 3 4 0 >0. (6)

2X1 X2 2X3X4 -
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Decorated Hyperbolic Delaunay Triangulation

Figure: Delaunay triangulations.

The transformation ® 5 : Tp (X,V) — Tp(X, V) preserves
Delaunay triangulations.

Since both situations:
2 2 2 2 2 2
X;+X5—X§5 X5 +XT—X§
2X1X2 2X3X4

> 0. (7)
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Ptolemy Conditions

Figure: Ptolemy conditions.

Let A,A’,B,B’,C,C’ are edge lengths of the Euclidean
guadrilateral and the Penner’s A-length of the decorated
hyperbolic ideal quarilateral, then both of them satisfy the
Ptolemy conditions:

CC'=AA'+BB'.
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Global defined mapping

The mapping ¢z : Tp (X,V) — Tp(X,V) is defined on each
local chart, by Tolemy condition. By Ptolemy condition, all the
locally defined mappings ¢ » can be glued together to form a
global map

D TPL(Z,V) — TD(Z,V),

Ptolemy condition shows that the global mapping is continuous.
Further computation shows that ¢ is globally C*.
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Global Mapping

Define the cell decompaosition of the Teichmuller spaces

TeL(Z,V) =JCrL(7)

T
where
CpL(7) :={[d] € Tp_|Zis Delaunay underd }.
Similarly
To(Z,V) ={JCo(7)
T
where

Cp(.7) :={[d] € Tp|Tis Delaunay underd }.

Inside the cells, the mapping ¢ 5 : Cp (7)) — Cp(7) is a
diffeomorphism.
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Global Mapping

On the boundary of the cells, restricted on Cp ()N Cp(7),
where four points are cocircle,

CpL(7) T")

| o |

CD(g) Hyperbolic Ptolemy CD(Q’)
Furthermore,

Euclidean Ptolemy
e — CPL(

Euclidean Ptolemy C
-~ PL

CeL(7) (7")

lmpy JIZICDW

CD(g) Hyperbolic Ptolemy CD(Q’)

the diagram commutes. So the piecewise diffeomorphism ¢ 5
can be glued together to form a global C! map:

D TPL(Z,V) — TD(Z,V)
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Existence of Solution to Discrete Surface
Ricci Flow
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Existence Proof

Domain Q, is the space of discrete conformal factor,

Oy :R”m{u| iui :O}.
i=1

The range Q is the space of discrete curvatures,
n
o = {K e (-2m| 3 K —2my(S)}
i=1

both of them are open sets in RVI=1. The global mapping is

F o 2% (p) xRV = Tp (2, V) 25 T (V) 5 ax
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Existence Proof

The global mapping is C?,

F o 2% (p} xRV = Tp (V) 25 T (5, V) 5 ak

During the flow, the triangulation is always Delaunay, the
cotangent edge weight is non-negative, the discrete
Laplace-Beltrami matrix is strictly positive definite. Hence the
Hessian matrix of the energy

u n
E(u) :/ S Kidu
i=1
is strictly convex. F is the gradient map of the energy,
F(u) = DE(u),

because Q, is convex, the mapping is a diffeomorphism.
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Convergence of Solutions to Discrete
Surface Ricci Flow
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Convergence Proof

Definition (& triangulation)

Given a compact polyhedral surface (X,V,d), a triangulation .7
is a d-triangulation, & > 0, if all the inner angles are in the
interval (8, 5 — 0).

Definition ((0,c)-triangulation)

Given a compact triangulated polyhedral surface (S,T,1*), a
geometric subdivision sequence (Tp,l;}) is a (9,c) subdivision
sequence, 0 >0, ¢ > 0, if each (Tp, ) is a & triangulation, and
the edge lengths satisfy

. 1 c
lre € (a,ﬁ),Ve € E(Tn)

Polyhedral surface can be replaced by a surface with a
Riemannian metric, triangulation can be replaced by geodesic
triangulation, then we obtain (J,c) geodesic subdivision
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Convergence Proof

Theorem (Discrete Surface Ricci Flow Convergence)

Given a simply connected Riemannian surface (S,g) with a
single boundary, the inner angles at the three corners are 7.
Given a (d,c) geodesic subdivision sequence (%, Ln), for any
edge e € E(Tp), Ln(e) is the geodesic length under the metric
g. There exists discrete conformal factor w, € RV (%), such that
for large enough n, C, = (S, %, W, x L)) satisfies
a. C, isisometric to a planar equilateral triangle A,
and C,, is a dg /2-triangulation
b. discrete uniformizations map ¢, : C, — A
converge to the smooth uniformization map
¢ :(S,9) — (A,dzdZ) uniformly, such that

Iim [ énlv () = ¢lv(z) o= 0.

>
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Topological Quadrilateral |
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Topological Quadrilateral

Figure: Topological quadrilateral.
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Topological Quadrilateral

Definition (Topological Quadrilateral)

Suppose S is a surface of genus zero with a single boundary,
and four marked boundary points {p1,p2,p3,p4} sorted
counter-clock-wisely. Then S is called a topological
quadrilateral, and denoted as Q(p1,p2,p3,p4).

Suppose Q(p1,p2,p3,p4) is a topological quadrilateral with a
Riemannian metric g, then there exists a unique conformal map
@:S — C, such that ¢ maps Q to a rectangle, ¢(p;) =0,

®(p2) = 1. The height of the image rectangle is the conformal
module of the surface.
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Algorithm: Topological Quadrilateral

Input: A topological quadrilateral M
Output: Conformal mapping from M to a planar rectangle
¢:M—D
@ Set the target curvatures at corners {po,p1,p2,P3} to be 7,
@ Set the target curvatures to be 0 everywhere else,
© Run ricci flow to get the target conformal metric G
© Isometrically embed the surface using the target metric.
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Topological Annulus )
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Topological Annulus

Figure: Topological annulus.
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Topological Annulus

Definition (Topological Annulus)

Suppose S is a surface of genus zero with two boundaries, the
S is called a topological annulus.

Suppose S is a topological annulus with a Riemannian metric
g, the boundary of S are two loops dS = y; — y», then there
exists a conformal mapping ¢ : S — C, which maps S to the
canonical annulus, @(y;) is the unit circle, @(y») is another
concentric circle with radius y. Then —logy is the conformal
module of S. The mapping @ is unique up to a planar rotation.
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Algorithm: Topological Annulus

Input: A topological annulus M, dM =y — ¥
Output: a conformal mapping from the surface to a planar
annulus : M — A

© Set the target curvature to be 0 every where,
@ Run Ricci flow to get the target metric,

© Find the shortest path y, connecting y and y, slice M
along y» to obtain M,

@ Isometrically embed M to the plane, further transform it to
a flat annulus

{z|r <Re(z) <0}/{z =z +2kV—-1m}

by planar translation and scaling,

© Compute the exponential map z — exp(z), maps the flat
annulus to a canonical annulus.
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Riemann Mapping )
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Conformal Module

Simply Connected Domains
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Topological Disk
Definition (Topological Disk)

Suppose S is a surface of genus zero with one boundary, the S
is called a topological disk.

4

Theorem

Suppose S is a topological disk with a Riemannian metric g,
then there exists a conformal mapping ¢ : S — C, which maps
S to the canonical disk. The mapping @ is unique up to a
Maobius transformation,

ioe Z—20

zZ—e —.
1-—24z
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Algorithm: Topological Disk

Input: A topological disk M, an interior point p € M
Output: Riemann mapping ¢ : M — mathbbD, maps M to the
unit disk and p to the origin

© Punch a small hole at p in the mesh M,

@ Use the algorithm for topological annulus to compute the
conformal mapping.
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Multiply connected domains |
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Multiply-Connected Annulus

Definition (Multiply-Connected Annulus)

Suppose S is a surface of genus zero with multiple boundaries,
then S is called a multiply connected annulus.

Suppose S is a multiply connected annulus with a Riemannian
metric g, then there exists a conformal mapping ¢ : S — C,
which maps S to the unit disk with circular holes. The radii and
the centers of the inner circles are the conformal module of S.
Such kind of conformal mapping are unique up to Mdbius
transformations.
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Algorithm: Multiply-Connected Annulus

Input: A multiply-connected annulus M,

oM =Yo—%,

Output: a conformal mapping ¢ : M — A, A is a circle domain.
© Fill all the interior holes y; to y,
@ Punchaholeaty,1<k<n

© Conformally map the annulus to a planar canonical
annulus

© Fill the inner circular hole of the canonical annulus

© Repeat step 2 through 4, each round choose different
interior boundary y. The holes become rounder and
rounder, and converge to canonical circles.
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Koebe’s Iteration - |

Figure: Koebe's iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - Il

Figure: Koebe's iteration for computing conformal maps for multiply
connected domains.
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Koebe’s lteration - Il

06

Figure: Koebe's iteration for computing conformal maps for multiply
connected domains.
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Convergence Analysis

Theorem (Gu and Luo 2009)

Suppose genus zero surface has n boundaries, then there
exists constants C; > 0 and 0 < C, < 1, for step k, for all z € C,

k
fe of ~L(z) —z| < C,C2ln],

where f is the desired conformal mapping.

W. Zeng, X. Yin, M. Zhang, F. Luo and X. Gu, "Generalized
Koebe’s method for conformal mapping multiply connected
domains”, Proceeding SPM’09 SIAM/ACM Joint Conference on
Geometric and Physical Modeling, Pages 89-100.
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Topological torus




Algorithm: Topological Torus

Input: A topological torus M
Output: A conformal mapping which maps M to a flat torus
C/{m+na|m,nZ}

© Compute a basis for the fundamental group (M), {y1, 2}

Qo Slice the surface along y1, y» to get a fundamental domain
M,

© Set the target curvature to be 0 everywhere
@ Run Ricci flow to get the flat metric
@ Isometrically embed S to the plane
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Hyperbolic Ricci Flow

Computational results for genus 2 and genus 3 surfaces.
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Hyperbolic Koebe’s Iteration

M. Zhang, Y. Li, W. Zeng and X. Gu. "Canonical conformal
mapping for high genus surfaces with boundaries”, Computer
and Graphics, Vol 36, Issue 5, Pages 417-426, August 2012.
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For more information, please email to
gu@cmsa.fas.harvard.edu.

Thank you!
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