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Thanks

Thanks for the invitation.

David Gu Applications of OMT



Collaborators

The work is collaborated with Shing-Tung Yau, Feng Luo, Jian
Sun, Na Lei, Li Cui and Kehua Su etc.
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Motivation

David Gu Applications of OMT



Mesh Parameterization
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Conformal Parameterization

Conformal parameterization: angle-preserving

Infinitesimal circles are mapped to infinitesimal circle.
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Area-preserving Parameterization

Area-preserving parameterization

Infinitesimal circles are mapped to infinitesimal ellipses,
preserving the areas.
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Surface Parameterization

Area-preserving parameterization

(a) Cortical surface (b) Conformal (c) Area-preserving
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Surface Parameterization
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Surface Parameterization

(a) Gargoyle model; (b) Angle-preserving; (c) Area-preserving.
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Volume Parameterization

harmonic map volume-preserving map
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Volume Parameterization

harmonic map

volume-preserving map
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Registration
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Conformal Parameterization for Surface Matching

Existing method, 3D surface matching is converted to image
matching by using conformal mappings.

f

f̄

φ1 φ2
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Conformal Parameterization for Surface Matching

Disadvantages: conformal parameterization may induce
exponential area shrinkage, which produces numerical
instability and matching mistakes.
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Optimal Mass Transport Map

Advantage: the parameterization is area-preserving, improves
the robustness.
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Registration based on Optimal Mass Transport Map
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Geometric Clustering
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Wasserstein Distance

Given a metric surface (S,g), a Riemann mapping
ϕ : (S,g)→ D

2, the conformal factor e2λ gives a probability
measure on the disk. The shape distance is given by the
Wasserstein distance.
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Expression Classification
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Expression Classification

Compute the Wasserstein distances, embed isometrically using
MDS method, perform clustering.
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From Shape to IQ

Can we tell the IQ from the shape of the cortical surface?
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Optimal Mass Transport Mapping
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Optimal Transport Problem

(Ω, �)

(D, �)

�

p

�(p)

Earth movement cost.
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Optimal Mass Transportation

Problem Setting

Find the best scheme of transporting one mass distribution
(µ ,U) to another one (ν ,V ) such that the total cost is
minimized, where U,V are two bounded domains in R

n, such
that

∫

U
µ(x)dx =

∫

V
ν(y)dy ,

0≤ µ ∈ L1(U) and 0≤ ν ∈ L1(V ) are density functions.

(�, U) (�, V )

f

x f (x)

David Gu Applications of OMT



Optimal Mass Transportation

For a transport scheme s ( a mapping from U to V )

s : x ∈ U → y ∈ V ,

the total cost is

C(s) =
∫

U
µ(x)c(x,s(x))dx

where c(x,y) is the cost function.

(�, U) (�, V )

f

x f (x)

David Gu Applications of OMT



Cost Function c(x ,y)

The cost of moving a unit mass from point x to point y .

Monge(1781) : c(x ,y) = |x −y |.

This is the natural cost function. Other cost functions include

c(x ,y) = |x −y |p,p 6= 0
c(x ,y) = − log |x −y |
c(x ,y) =

√

ε + |x−y |2,ε > 0

Any function can be cost function. It can be negative.
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Optimal Transportation Map

Problem

Is there an optimal mapping T : U → V such that the total cost
C is minimized,

C (T ) = inf{C (s) : s ∈S }

where S is the set of all measure preserving mappings,
namely s : U → V satisfies

∫

s−1(E)
µ(x)dx =

∫

E
ν(y)dy ,∀ Borel set E ⊂ V
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Solutions

Three categories:
1 Discrete category: both (µ ,U) and (ν ,V ) are discrete,
2 Semi-continuous category: (µ ,U) is continuous, (ν ,V ) is

discrete,
3 Continuous category: both (µ ,U) and (ν ,V ) are

continuous.
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Kantorovich’s Approach

Both (µ ,U) and (ν ,V ) are discrete. µ and ν are Dirac
measures. (µ ,U) is represented as

{(µ1,p1),(µ2,p2), · · · ,(µm,pm)},

(ν ,V ) is
{(ν1,q1),(ν2,q2), · · · ,(νn,qn)}.

A transportation plan f : {pi} → {qj}, f = {fij}, fij means how
much mass is moved from (µi ,pi) to (νj ,qj), i ≤m, j ≤ n. The
optimal mass transportation plan is:

min
f

fijc(pi ,qj)

with constraints:
n

∑
j=1

fij = µi ,

m

∑
i=1

fij = νj .

Optimizing a linear energy on a convex set, solvable by linear
programming method.
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Kantorovich’s Approach

Kantorovich won Nobel’s prize in economics.

min
f

∑
ij

fijc(pi ,pj),

such that

∑
j

fij = µi ,∑
i

fij = νj .

mn unknowns in total. The
complexity is quite high.

(�1, p1)

(�2, p2)

(�m, pm)

(�1, q1)

(�2, q2)

(�n, qn)

fij
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Brenier’s Approach

Theorem (Brenier)

If µ ,ν > 0 and U is convex, and the cost function is quadratic
distance,

c(x,y) = |x−y|2

then there exists a convex function f : U → R unique upto a
constant, such that the unique optimal transportation map is
given by the gradient map

T : x→ ∇f (x).
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Brenier’s Approach

Continuous Category: In smooth case, the Brenier potential
f : U→ R statisfies the Monge-Ampere equation

det
(

∂ 2f
∂xi∂xj

)

=
µ(x)

ν(∇f (x))
,

and ∇f : U → V minimizes the quadratic cost

min
f

∫

U
|x−∇f (x)|2dx.
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Semi-Continuous Category

Discrete Optimal Mass Transportation Problem

Wi

Ω

T

(pi, Ai)

Given a compact convex domain U in R
n and p1, · · · ,pk in R

n

and A1, · · · ,Ak > 0, find a transport map T : U →{p1, · · · ,pk}
with vol(T−1(pi)) = Ai , so that T minimizes the transport cost

∫

U
|x−T (x)|2dx.
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Power Diagram vs Optimal Transport Map

Theorem (Aurenhammer-Hoffmann-Aronov 1998)

Given a compact convex domain U in R
n and p1, · · · ,pk in R

n

and A1, · · · ,Ak > 0, ∑i Ai = vol(U), there exists a unique power
diagram

U =
k
⋃

i=1

Wi ,

vol(Wi) = Ai , the map T : Wi 7→ pi minimizes the transport cost
∫

U
|x−T (x)|2dx.
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Power Diagram vs Optimal Transport Map

u u∗

∇u

Wi
pi

�i
�∗
i

Ω, T
Ω
∗, T ∗

proj
proj∗
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Power Diagram vs Optimal Transport Map

1 F. Aurenhammer, F. Hoffmann and B. Aronov,
Minkowski-type theorems and least squares partitioning, in
Symposium on Computational Geometry, 1992, pp.
350-357.

2 F. Aurenhammer, F. Hoffmann and B. Aronov,
Minkowski-type Theorems and Least-Squares Clustering,
vol 20, 61-76, Algorithmica, 1998.

3 Bruno Lévy, “A numerical algorithm for L2 semi-discrete
optimal transport in 3D”, arXiv:1409.1279, Year 2014.

4 X. Gu, F. Luo, J. Sun and S.-T. Yau, “Variational Principles
for Minkowski Type Problems, Discrete Optimal Transport,
and Discrete Monge-Ampere Equations”, arXiv:1302.5472,
Year 2013.
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Power Diagram vs Optimal Transport Map

In Aurenhammer et al.’s and Levy’s works, the main theorems
are:

Theorem

Given a set of points P and a set of weights W = (wi), the
assignment TP,W defined by the power diagram is an optimal
transport map.

Theorem

Given a measure µ with density, a set of points (pi) and
prescribed mass νi such that ∑νi = µ(Ω), there exists a
weights vector W such that µ(PowW (pi)) = νi .
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Power Diagram vs Optimal Transport Map

In Levy’s proof, the following energy is examined: Let T : Ω→ P
be an arbitrary assignment,

fT (W ) :=
∫

Ω
‖x −T (x)‖2−wT (x)dµ ,

using envelope theorem,

∂ fTW
(W )

∂wi
=−µ(PowW (pi)),

the convex energy is defined as

g(W ) = fTW
(W )+∑

i

νiwi ,

the gradient is

∂g(W )

∂wi
=−µ(PowW (pi))+νi ,
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Comparison

The key differences between Aurenhammer 1998, Lévy 2014
works and Gu-Luo-Sun-Yau 2013 are:

1 What is the geometric meaning of the convex energy ?
2 What is the explicit formula for Hessian matrix ? What is

the geometric meaning of the Hessian matrix ?
3 The convexity of the admissible weight space (height

space). The argument that the critical point is an interior
point in the admissible weight space.

4 Gradient descend, Quasi-Newton vs Newton’s method.
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Comparison

The same theorem has been proved several times in different
fields, from different perspectives.

1 Alexandrov 1950, proved the existence using the
non-constructive topological method, and the uniqueness
using Brunn-Minkowski inequality.

2 Aurenhammer 1998, Lévy 2014 used the variational
method to prove the existence and the uniqueness by a
convex energy, formulated from L2 transportation cost. The
gradient formula is given.

3 Gu-Luo-Sun-Yau 2013 used the variational approach,
proved the existence and the uniqueness by a convex
energy, started from the volume of a convex polytope,
furthermore the convexity of the space of admissible power
weights (heights), and the interior critical point arguments
are emphasized, which are based on Brunn-Minkowski
inequality. Both the gradient and the Hessian are given.
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Remarks

Only the convexity of the energy is insufficient to guarantee
the existence of the solution, it is further required that the
domain is convex and the critical point is interior;

The Brunn-Minkowski inequality is fundamentally essential;

The L2 cost and the volume are Legendre dual to each
other.
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Convex Geometry

David Gu Applications of OMT



Minkowski problem - 2D Case

Example

A convex polygon P in R
2 is determined by its edge lengths Ai

and the unit normal vectors ni .

Take any u ∈ R
2 and project P

to u, then 〈∑i Aini ,u〉= 0,
therefore

∑
i

Aini = 0.

Ai

ni
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Minkowski problem - General Case

Minkowski Problem

Given k unit vectors n1, · · · ,nk not
contained in a half-space in R

n

and A1, · · · ,Ak > 0, such that

∑
i

Aini = 0,

find a compact convex polytope P
with exactly k codimension-1 faces
F1, · · · ,Fk , such that

1 area(Fi) = Ai ,
2 ni ⊥ Fi .

ni

FiAi
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Minkowski problem - General Case

Theorem (Minkowski)

P exists and is unique up to
translations.

ni

FiAi
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Minkowski’s Proof

Given h = (h1, · · · ,hk ), hi > 0, define a
compact convex polytope

P(h) = {x|〈x,ni〉 ≤ hi ,∀i}

Let Vol : Rk
+→ R+ be the volume

Vol(h) = vol(P(h)), then

∂Vol(h)
∂hi

= area(Fi)

ni

FiAi
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Minkowski’s Proof

Define the admissible height space

H := {h|hi > 0,area(Fi)≥ 0, i = 1,2, · · · ,k}∩{∑hiAi = 1},

By using Brunn-Minkowski inequality,
one can show that H is convex and
compact. The smooth function Vol(h)
reaches its maximum. Furthermore, on
∂H , the gradient of Vol(h) points inside,
therefore, the maximum is an interior
point. Using Lagrangian multiplier, the
solution (up to scaling) to MP is the
critical point of Vol .

ni

FiAi
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Minkowski’s Proof

Uniqueness part is proved using
Brunn-Minkowski inequality, which
implies (Vol(h))

1
n is concave in h.

ni

FiAi
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Minkowski Sum

⊕

Definition (Minkowski Sum)

Given two point sets P,Q ⊂R
n, their Minkowski sum is given by

P⊕Q = {p+q|p ∈ P,q ∈Q}

Let
P(h) = {x|〈x,ni〉 ≤ hi ,∀i}

then
P(h1)⊕P(h2) = P(h1 +h2).
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Brunn-Minkowski inequality

Theorem (Brunn-Minkowski)

For every pair of nonempty compact subsets A and B of Rn and
every 0≤ t ≤ 1,

[Vol(tA⊕ (1− t)B)]
1
n ≥ t[vol(A)]

1
n +(1− t)[vol(B)]

1
n .

For convex sets A and B, the inequality is strick for 0 < t < 1
unless A and B are homothetic i.e. are equal up to translation
and dilation.
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Piecewise Linear Convex Function

A Piecewise Linear convex function

f (x) := max{〈x,pi〉+hi |i = 1, · · · ,k}

produces a convex cell decomposition
Wi of Rn:

Wi = {x|〈x,pi〉+hi ≥ 〈x,pj〉+hj ,∀j}

Namely, Wi = {x|∇f (x) = pi}.

Ω

Wi

Fi

�j

uℎ(x)
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Alexandrov Theorem

Theorem (Alexandrov 1950)

Given Ω compact convex domain in
R

n, p1, · · · ,pk distinct in R
n,

A1, · · · ,Ak > 0, such that
∑Ai = Vol(Ω), there exists PL convex
function

f (x) := max{〈x,pi〉+hi |i = 1, · · · ,k}

unique up to translation such that

Vol(Wi) = Vol({x|∇f (x) = pi}) = Ai .

Alexandrov’s proof is topological, not
variational. It has been open for years
to find a constructive proof.

Ω

Wi

Fi

�j

uℎ(x)
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Voronoi Decomposition

David Gu Applications of OMT



Voronoi Diagram

Voronoi Diagram

Given p1, · · · ,pk in R
n, the Voronoi cell

Wi at pi is

Wi = {x||x−pi |
2 ≤ |x−pj|

2
,∀j}.
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Power Distance

Power Distance

Given pi associated with
a sphere (pi , ri) the
power distance from
q ∈ R

n to pi is

pow(pi ,q)= |pi−q|2−r2
i .

pi
q

pow(pi, q) ri
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Power Diagram

Given p1, · · · ,pk in R
n and power weights h1, · · · ,hk , the power

Voronoi cell Wi at pi is

Wi = {x||x−pi |
2 +hi ≤ |x−pj|

2 +hj ,∀j}.
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PL convex function vs. Power diagram

Lemma

Suppose f (x) = max{〈x,pi〉+hi} is a
piecewise linear convex function, then its
gradient map induces a power diagram,

Wi = {x|∇f = pi}.

Proof.

〈x,pi〉+hi ≥ 〈x,pj〉+hj is equivalent to

|x−pi |
2−2hi−|pi |

2≤ |x−pj |
2−2hj−|pj |

2
.

Ω

Wi

Fi

�j

uℎ(x)
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Variational Proof

Theorem (Gu-Luo-Sun-Yau 2013)

Ω is a compact convex domain in R
n, p1, · · · ,pk distinct in R

n,
s : Ω→ R is a positive continuous function. For any
A1, · · · ,Ak > 0 with ∑Ai =

∫

Ω s(x)dx, there exists a vector
(h1, · · · ,hk ) so that

f (x) = max{〈x,pi〉+hi}

satisfies
∫

Wi∩Ω
s(x)dx = Ai , where Wi = {x|∇f (x) = pi}.

Furthermore, h is the maximum point of the convex function

E(h) =
k

∑
i=1

Aihi −

∫ h

0

k

∑
i=1

wi(η)dηi ,

where wi(η) =
∫

Wi(η)∩Ω s(x)dx is the volume of the cell.
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Variational Proof

X. Gu, F. Luo, J. Sun and S.-T.
Yau, “Variational Principles for
Minkowski Type Problems,
Discrete Optimal Transport,
and Discrete Monge-Ampere
Equations”, arXiv:1302.5472

Accepted by Asian Journal of
Mathematics (AJM)
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Variational Proof

Proof.

For h = (h1, · · · ,hk ) in R
k , define the PL convex function f as

above and let Wi(h) = {x|∇f (x) = pi} and wi(h) = vol(Wi(h)).
First, we show the admissible height space

H = {h ∈ R
k |wi(h)> 0,∀i}

is non-empty open convex set in R
k by using the

Brunn-Minkowski inequality.
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Variational Proof

Proof.

Second, we can show the symmetry

∂wi

∂hj
=

∂wj

∂hi
≤ 0

for i 6= j . Thus the differential 1-form ∑wi(h)dhi is closed in H .
Therefore ∃ a smooth F : H → R so that

∂F
∂hi

= wi(h),

hence

F (h) :=
∫ h k

∑
i=1

wi(η)dηi .
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Variational Proof

Proof.

Third, because
∂wi(h)

∂hi
= 0

due to

∑wi(h) = vol(Ω).

Therefore the Hessian of F is diagonally dominated, F (h) is
convex in H .
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Variational Proof

Proof.

Fourth, F is strictly convex in

H0 = {h ∈H |
k

∑
i=1

hi = 0}

and that
∇F (h) = (w1(h),w2(h), · · · ,wk (h)).

If F is strictly convex on an open convex set Ω in R
k , then

∇F : Ω→ R
k is one-one. This shows the uniqueness part of the

Alexandrov’s theorem.
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Variational Proof

Proof.

Fifth, it can be shown that the convex function

G(h) =∑Aihi −F (h)

has a maximum point in H0. The gradient ∇G on the boundary
of H0 points to the interior. Therefore, the maximum point is an
interior point, which is the solution to Alexandrov’s theorem.
This gives the existence proof.
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Geometric Interpretation

One can define a cylinder through ∂Ω, the cylinder is truncated
by the xy-plane and the convex polyhedron. The energy term
∫ h ∑wi(η)dηi equals to the volume of the truncated cylinder.
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Computational Algorithm

Ω

Wi

Fi

�j

uℎ(x)

The concave energy is

E(h1,h2, · · · ,hk ) =
k

∑
i=1

Aihi −
∫ h

0

k

∑
j=1

wj(η)dηj ,

Geometrically, the energy is the volume beneath the parabola.
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Computational Algorithm

Ω

Wi

Fi

�j

uℎ(x)

The gradient of the energy is the areas of the cells

∇E(h1,h2, · · · ,hk) = (A1−w1,A2−w2, · · · ,Ak −wk)
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Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual
edges,

∂wi

∂hj
=
|eij |

|ēij |
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Computational Algorithm

1 Initialize h = 0
2 Compute the Power Voronoi diagram, and the dual Power

Delaunay Triangulation
3 Compute the cell areas, which gives the gradient ∇E
4 Compute the edge lengths and the dual edge lengths,

which gives the Hessian matrix of E , Hess(E)

5 Solve linear system

∇E = Hess(E)dh

6 Update the height vector

(h)← h−λdh,

where λ is a constant to ensure that no cell disappears
7 Repeat step 2 through 6, until ‖dh‖< ε .
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Summary

1 Minkowski problem and the optimal mass transportation
problem are closely related by the Monge-Ampere
equation

2 Discrete variational framework for sovling Monge-Ampere
equation with explicit geometric meaning

3 General framework for shape comparison/classification
based on Wasserstein distance
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Thanks

Code and Data

The code and the data sets can be downloaded from the
following link:

http://www3.cs.stonybrook.edu/˜ gu/software/omt/

David Gu Applications of OMT



Thanks

For more information, please email to gu@cs.stonybrook.edu.

Thank you!
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