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Optimal Transport Map - Computational Algorithm

1 Initialize h = 0
2 Compute the Power Voronoi diagram, and the dual Power

Delaunay Triangulation
3 Compute the cell areas, which gives the gradient ∇E
4 Compute the edge lengths and the dual edge lengths,

which gives the Hessian matrix of E , Hess(E)

5 Solve linear system

∇E = Hess(E)dh

6 Update the height vector

(h)← h−λdh,

where λ is a constant to ensure that no cell disappears
7 Repeat step 2 through 6, until ‖dh‖< ε .
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Applications

Parameterization

Visualization

Registration

Classification
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Parameterizaion
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Motivation

Definition (Parameterization)

Surface parameterization refers to the process of mapping a
surface onto a planar (or spherical) domain.
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Motivation

Parameterization can be applied for texture mapping, normal
map and so on.
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Motivation

Unavoidably, surface parameterizations have to introduce
distortions. There are two types of distortions: angle
distortion and area distortion.

If a parameterization preserves both angle and area, then
the parameterization must be isometric, therefore it
preserves Gaussian curvature everywhere.

Therefore, general parameterization of curved surfaces
can not preserve both angle and area.
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Conformal Parameterization

Conformal parameterization: angle-preserving

Infinitesimal circles are mapped to infinitesimal circle.
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Area-preserving Parameterization

Area-preserving parameterization

Infinitesimal ellipses are mapped to infinitesimal circles,
preserving the areas.
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Topological Disk Case
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Area-Preserving Parameterization Algorithm

1 Compute conformal parameterization using Ricci flow
ϕ : M → D

2 Compute the conformal factor at each vertex, treated as
the measure

µ = e2λ(x ,y)dxdy

3 Compute the optimal mass transport map

ψ : (D,dxdy)→ (D,e2λ dxdy),

4 The composition

ψ−1 ◦ϕ : M → (D,dxdy)

is the area-preserving parameterization.
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Surface Parameterization (topological disk)
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Surface Parameterization (topological disk)

(a) Gargoyle model; (b) Angle-preserving; (c) Area-preserving.
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Poly-Annulus Case
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Computational Method - Koebe’s iteration
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Topological Annulus

γ0

γ1

τ
τ

+τ
−

Set the target curvatures to be zeros everywhere. Cut the
surface along τ , isometrically embed the surface onto a planar
rectangle, use complex exponential map to map it onto a planar
annulus.
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Koebe’s Iteration - I

Figure: Koebe’s method for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - II

Figure: Koebe’s method for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - III

Figure: Koebe’s method for computing conformal maps for multiply
connected domains.
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Convergence Analysis

Theorem (Gu and Luo 2009)

Suppose genus zero surface has n boundaries, then there
exists constants C1 > 0 and 0 < C2 < 1, for step k, for all z ∈ C,

|fk ◦ f−1(z)−z| < C1C
2[ k

n ]

2 ,

where f is the desired conformal mapping.
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Poly-Annulus Area-preserving Algorithm

1 Compute conformal parameterization, maps the mesh onto
a planar circle domain

ϕ : M → A

2 Compute the conformal factor e2λ induced by the
conformal mapping

3 Assign measure µ on A,

µ(p) =
{

e2λ(p)dxdy p ∈ ϕ(M)
ε p 6∈ ϕ(M)

4 Compute the optimal mass transportation map

ψ : (D,dxdy)→ (D,µ)

5 The composition ψ−1 ◦ϕ : M → D is the area-preserving
parameterization.
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Area-Preserving Parameterization

Figure: Area-preserving parameterization.David Gu Applications of OMT



Angle-preserving VS. Area-preserving

Figure: Angle-preserving and area-preserving parameterization -
world cup model.
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Distortions

Histograms of angle and area distortions of the face
parameterizations.
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Angle-preserving VS. Area-preserving

Figure: Angle-preserving and area-preserving parameterization -
kitten model.
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Angle-preserving VS. Area-preserving

Figure: Angle-preserving and area-preserving parameterization -
kitten model.
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Angle-preserving VS. Area-preserving

Figure: Angle-preserving and area-preserving texture mapping -
horse model.
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Area-Preserving texture mapping

Figure: Texture mapping result based on area-preserving
parameterization. David Gu Applications of OMT



Spherical Surface Case
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Algorithm Pipeline

1 Choose three points {p1,p2,p3} ∈ S, compute the unique
comformal map φ : S→ Ĉ, which maps {p1,p2,p3} to
{0,1,∞} respectively. where Ĉ= C∪{∞}.

2 Compute the conformal factor e2λ induced by the
conformal mapping.

3 Consider the unit sphere S
2 embedded in R

3, Compute the
stereographic projection ψ : S2→ Ĉ. The induced metric is
h = 4dzdz̄

(1+zz̄)2 .

4 Compute the the optimal mass transport map
τ : ((Ĉ, 4dzdz̄

(1+zz̄)2 )→ (Ĉ,e2λ dzdz̄));

5 The composition ψ−1 ◦ τ−1 ◦φ : (S,g)→ (S2,h) is an
area-preserving mapping.
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Spherical Area-Preserving Parameterization

(S,g)
ψ−1 ◦ τ−1 ◦φ

> (S2
,h)

(Ĉ,e2λ dzdz̄)

φ
∨ τ−1

> (Ĉ,
4dzdz̄

(1+zz̄)2 )

ψ∨
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Spherical Area-Preserving Parameterization
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Spherical Area-Preserving Parameterization
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Spherical Area-Preserving Parameterization
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Spherical Area-Preserving Parameterization

Figure: area-preserving parameterization of gargoyle model. left:
gargoyle model; middle: initial conformal map; right: area-preserving
map
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Spherical Area-Preserving Parameterization

Figure: area-preserving parameterization of maxplanck model. left:
maxplanck model; middle: initial conformal map; right:
area-preserving map
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Volume Preserving Parameterization
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Topological Ball Case
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Algorithm Pipeline

1 Use spherical harmonic map f to map the boundary of the
topological ball ∂M to the unit sphere S

2;
2 Compute a volumetric harmonic map F : M → D

3 with the
Dirichlet boundary condition f ;

3 Compute the discrete measures and construct the target
point set P.

4 Compute the discrete optimal mass transportation map
φ : D3→ P.

5 φ−1 ◦F : M → D
3 gives the volume preserving

parameterization.
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Volumetric Parameterization

Figure: Volumetric morphing using our method.
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Volumetric Parameterization

Figure: Volumetric morphing using our method.
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Volumetric Parameterization

Figure: Volumetric morphing using Lévy’s method.

Bruno Lévy, “A numerical algorithm for L2 semi-discrete optimal transport in 3D”, ESAIJ: Mathematical Modelling &

Numerical Analysis 49(6) (2015) 1693-1715.
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Volumetric Parameterization

Figure: Volumetric morphing using Lévy’s method.

Bruno Lévy, “A numerical algorithm for L2 semi-discrete optimal transport in 3D”, ESAIJ: Mathematical Modelling &

Numerical Analysis 49(6) (2015) 1693-1715.
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Volumetric Parameterization

our method Levy’s method

Figure: Volumetric morphing using different methods.
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Complicated Topology Case
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Volume-Preserving Parameterization

Figure: Volume-preserving parameterization of solids with
complicated topologies.
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Harmonic vs. OMT

Figure: The comparison of volume distortions and dihedral angle
distortions of Harmonic map and OMT map.
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Visualization
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Visualization
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Visualization

Figure: Adjust the target areas of ROIs.
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Visualization

Figure: Importance driven results of ROIs with different scale factors.
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Visualization

Figure: The volumetric Aneurism is magnified by large scales using
the OMT technique.
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Visualization

Figure: Adjust the target volumes of irregular regions of interest.
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Visualization

Figure: Adjust the target volumes of multiple focus regions.

David Gu Applications of OMT



Registration
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Motivation

3D Surface registration plays a fundamental role in computer
vision. It lays down the foundation of facial recognition,
expression analysis, dynamic surface tracking, shape analysis,
geometric data retrieval and many other important applications.

Figure: The marked metric 3D surfaces.
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Surface Registration

Figure: Corresponding features are mapped to each other, each
small disk is mapped onto the corresponding ellipse.
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Conformal Parameterization for Surface Matching

Existing method, 3D surface matching is converted to image
matching by using conformal mappings.

f

f̄

φ1 φ2
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Conformal Parameterization for Surface Matching

Disadvantages: conformal parameterization may induce
exponential area shrinkage, which produces numerical
instability and matching mistakes.
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Optimal Mass Transport Map

Advantage: the parameterization is area-preserving, improves
the robustness.
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Optimal Transport Map Examples
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Optimal Transport Map Examples
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Registration with Large Deformations

Disadvantages: Registration based on optimal mass
transportation mapping is good for isometric surface
registration; for surfaces with large deformations, land mark
constraints need to be added. Conventional optimal mass
transportation map can not incorporate the marker constraints
directly.
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Central Task

Main Problem

Find robust algorithm to register surfaces with large
deformations and landmark constraints.

Solutions

Optimal mass transportation map plus Teichmüller map.
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Registration based on OMT and Teichmüller Map

Assume the surfaces are S1 and S2, with landmarks {pi} ⊂ S1

and {qj} ⊂ S2,
1 Compute conformal mappings ϕk : Sk → D, k = 1,2, the

conformal factors are λk : Sk → R;
2 Compute the optimal transportation maps

ψk : (Dk ,dxdy)→ (D,e2λk dxdy);
3 Compute the Teichmüller map with landmark constraints

τ : D→ D,τ(ψ1 ◦ϕ1(pi)) = ψ2 ◦ϕ2(qi).

4 The registration is given by

ϕ−1
2 ◦ψ2 ◦ τ ◦ψ−1

1 ◦ϕ1 : (S1,{pi})→ (S2,{qi}).
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Surface Registration
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Registration based on OMT and Teichmüller Map
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Registration based on OMT and Teichmüller Map
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Curvature Sensitive Remeshing
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Curvature Sensitive Remeshing

Algorithm Pipeline

1 Compute the conformal parameterization of the input
surface ϕ : (S,g)→ (D,dzdz̄),

2 Compute the optimal mass transportation map
ψ : (D,dxdy)→ (D,µ), where µ is the combination of the
surface area element e2λ dxdy and the absolute value of
the Gaussian curvature measure |K (x ,y)|dxdy ,

3 Uniformly sample on the preimage of the OMT map
ψ−1(D),

4 Pull back the samples to the conformal parameter domain
ϕ(S), compute the Delaunay triangulation T ,

5 Pull back the triangulation T to the original surface S,
which induces the remeshing of S.
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Curvature Sensitive Parameterization(CSP)

Original face mesh Conformal parameteraiztion
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Curvature Sensitive Parameterization(CSP)

Original face mesh
Area preserving
parameteraiztion
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Curvature Sensitive Parameterization(CSP)

Original face mesh CSP: area + curvature×0.1
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Curvature Sensitive Parameterization(CSP)

Original face mesh CSP: area + curvature×0.2
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Curvature Sensitive Parameterization(CSP)

Original face mesh CSP: area + curvature×0.4
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Curvature Sensitive Parameterization(CSP)

Original face mesh CSP: area + curvature×0.8
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Curvature Sensitive Parameterization(CSP)

Original face mesh CSP: area + curvature×1.0
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Curvature Sensitive Parameterization(CSP)

Original face mesh CSP: area + curvature×2.0
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Compare Multi-scale remeshing between APP and
CSP

(a) APP
(b) original

mesh(140K)
(c) CSP
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Compare Multi-scale remeshing between APP and
CSP

Remeshing: 1K vertices

(a) APP
wireframe

(b) APP smooth (c) CSP smooth (d) CSP
wireframe
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Compare Multi-scale remeshing between APP and
CSP

Remeshing: 2K vertices

(a) APP
wireframe

(b) APP smooth (c) CSP smooth (d) CSP
wireframe
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Compare Multi-scale remeshing between APP and
CSP

Remeshing: 4K vertices

(a) APP
wireframe

(b) APP smooth (c) CSP smooth (d) CSP
wireframe
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Compare Multi-scale remeshing between APP and
CSP

Remeshing: 8K vertices

(a) APP
wireframe

(b) APP smooth (c) CSP smooth (d) CSP
wireframe
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Compare Multi-scale remeshing between APP and
CSP

Remeshing: 16K vertices

(a) APP
wireframe

(b) APP smooth (c) CSP smooth (d) CSP
wireframe
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Compare Multi-scale remeshing between APP and
CSP

Remeshing: 32K vertices

(a) APP
wireframe

(b) APP smooth (c) CSP smooth (d) CSP
wireframe
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Compare Multi-scale remeshing between APP and
CSP

Remeshing: 64K vertices

(a) APP
wireframe

(b) APP smooth (c) CSP smooth (d) CSP
wireframe
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Normal Map
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Normal Map

In game industry, the speed of rendering is determined by the
number of the faces of a mesh. In 3D computer graphics,
normal mapping is a technique used for faking the lighting of
bumps and dents. It is used to add details without using more
polygons. A common use of this technique is to greatly
enhance the appearance and details of a low polygon model by
generating a normal map from a high polygon model.
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Normal Map

Algorithm Pipeline

1 Simplify the original high resolution mesh M to a low
resolution mesh M̃;

2 Parameterize the low resolution model to a planar domain
using OMT map, ϕ : M̃ → D;

3 Compute the normal at each vertex of the high resolution
model;

4 Compute the closest point map from the high-res model to
the low-res model ψ : M → M̃; This composes the map
from the high-res model to the parameter domain of the
low-res model ϕ ◦ψ : M → D;

5 Copy the normal to the high-res model to the parameter
domain to generate the normal map.
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Normal Map

original mesh with 490k faces simplified mesh with 1k faces

original mesh with 5k faces simplified mesh with 10k faces
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Normal Map

original mesh with 323k faces simplified mesh with 1k faces

original mesh with 5k faces simplified mesh with 10k faces
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Normal Map

original mesh with 95k faces simplified mesh with 1k faces

original mesh with 5k faces simplified mesh with 10k faces
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Normal Map

original mesh simplified mesh simplified mesh
with 270k faces with 7k faces with 1600 faces
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Shape Classification

David Gu Applications of OMT



Introduction

Shape classification plays a fundamental role in computer
vision and medical imaging.

We use Wasserstein distance based on optimal mass
transport theory for shape classification.

We apply our method to expression classification, brain
morphometry, and demonstrate the potential of our method
on the discriminative analysis of hippocampal shape in
epilepsy.
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Wasserstein Distance

Given a metric surface (S,g), a Riemann mapping
ϕ : (S,g)→ D

2, the conformal factor e2λ gives a probability
measure on the disk. The shape distance is given by the
Wasserstein distance.
The transportation cost of the optimal mass transport map
defines the Wasserstein distance between two surfaces.
It intrinsically measures the dissimilarities between two
surfaces.
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Wasserstein Distance Algorithm
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Expression Classification
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Expression Classification

Compute the Wasserstein distances among all the facial
surfaces, isometrically embed on the plane using MDS method,
perform clustering.
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From Shape to IQ

Can we tell the IQ from the shape of the cortical surface?
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From Shape to IQ
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From Shape to IQ

Figure: Wasserstein distance matrix.

The Wasserstein distance and the IQ distance are highly
correlated.
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Summary

1 OMT can be applied in measure controllable
parameterization, texture mapping, visualization,
registration, image warping and so on

2 General framework for shape comparison/classification
based on Wasserstein distance
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Thanks

For more information, please email to
gu@cmsa.fas.harvard.edu.

Thank you!
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