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The space of oriented geodesics

Consider the following 3-manifolds M = R3,S3, or H3 and, define the set of
all oriented geodesics in M:

L(M) = {oriented geodesics inM}.

Then L(M) has a structure of a 4-dimensional manifold. In particular, we
have

L(R3) = {(
−→
U ,
−→
V ) ∈ R3 × R3|

−→
U ·
−→
V = 0, |

−→
U | = 1} = TS2.
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The space of oriented geodesics

L(H3) = S2 × S2 −∆, where ∆ = {(µ1, µ2) ∈ S2 | µ2 = −µ1}.

L(S3) = S2 × S2.
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The space of oriented geodesics

The dimension of the space of oriented geodesics of M3 is 4.

Jacobi Fields

A Jacobi field along the geodesic γ ⊂ M is a vector field on M that
describes the difference between the geodesic and an ”infinitesimally close”
geodesic.

For γ ∈ L(M3), the tangent space TγL(M3) is

TγL(M3) = {X ⊂ TM | X is an orthogonal Jacobi Field along γ}.

Hitchin, in 1982, has proved that rotations of orthogonal Jacobi fields along
a geodesic γ remains an orthogobal Jacobi field along γ.
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Complex structure

If γ is an oriented geodesic, we define the rotation Jγ : TγM → TγM about
+π/2.

Note that for X ∈ TγM we have Jγ ◦ Jγ(X ) = −X .

Define the endomorphism

J : TL(M3) −→ TL(M3) : X 7→ R(X ),

where X is a vector field on TL(M3).

Complex structure

Let (M3, g) be a 3-dimensional real space form. The map J is a complex
structure defined on the space of oriented geodesics L(M3).

In other words, J is a linear map such that J2 = −Id satisfying the
integrability condition.
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Symplectic structure

Let ∇ be the Levi-Civita connection of the 3-dimensional real space form
(M3, g).

We define the following 2-form Ω in L(M3):
If γ is an oriented geodesic in M3 and X ,Y are orthogonal Jacobi along γ,
we have

Symplectic form

Ωγ(X ,Y ) := g(∇γ̇X ,Y )− g(X ,∇γ̇Y ).

where γ̇ is the velocity of γ.

Ω is a non-degenerate.

Ω is closed, i.e., dΩ = 0.

Then Ω is a symplectic structure on L(M3)
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The neutral metric

Proposition

The complex structure J and the symplectic structure Ω are compatible, that
is,

Ω(JX , JY ) = Ω(X ,Y ),

for every X ,Y ∈ TL(M3).

We now define the following metric in L(M3):

G(X ,Y ) := Ω(JX ,Y )

Theorem: Properties of the metric G
The pseudo-Riemannian metric G satisfies the following properties:

1 G is neutral, that is, it has signature (+ +−−).

2 (L(M3),G) is locally conformally flat and scalat flat.

3 G is invariant under the natural action of the isometry group of (M, g).
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Curves in the space of oriented geodesics

A curve in L(M3) is a 1-parameter family of oriented geodesics. They
correspond to ruled surfaces in M.

Geodesics in L(M3)

Every geodesic in (L(M3),G) is a minimal ruled surface in M. In particular,
a geodesic in (L(M3),G) is null if and only if the corresponding ruled surface
in M is totally geodesic.
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The surface theory

A surface Σ in L(M3) is a 2-parameter family of oriented geodesics.

Using the symplectic form Ω we define the following surfaces:

Lagrangian surfaces

Let f : Σ→ L(M3) be an immesion of a 2-manifold in L(M3). A point
γ ∈ Σ is said to be a Lagrangian point if (f ∗Ω)(γ) = 0. If all points of Σ are
Lagrangian, then Σ is said to be a Lagrangian surface.

We now consider a surface S in M3 and take the oriented geodesics normal
to S .
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The surface theory

The set of oriented geodesics normal to S is a surface in L(M3) which will
be denoted as Σ. The relation between S and Σ is given by the following:

B. Guilfoyle & W. Klingenberg (2005), N. Georgiou & B. Guilfoyle (2010)

Let S be an oriented surface in M and let Σ be the set of all oriented
geodesics that are normal to S . Then Σ is a Lagrangian surface.
Furthermore, the metric GΣ induced on Σ is Lorentzian.

Using the complex structure J we define the following:

Complex points/ Complex curve

Let Σ be a surface in L(M3) by f . A point γ ∈ Σ is said to be a complex
point if the complex structure J preserves the tangent plane TγΣ. If all
points of Σ are complex, then Σ is said to be a complex curve.
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Umbilic points

Let S be a surface in M3. A point p ∈ S is said to be umbilic if the principal
curvatures are equal. They are points that are looks spherical.

Example of umbilic points:

All points of a sphere are umbilic.

The following ellipsoide has four umbilic points.

The rugby ball has two umbilic points.
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Umbilic points

There exists an important relation between complex points and umbilic
points.

Umbilic points

Let S be an oriented surface in M and let Σ be the Lagrangian surface
formed by the normal oriented geodesics to S . Then p ∈ S is an umbilic
point if and only if the oriented geodesic γ orthogonal to S at p is a complex
point.

The previous result, gives new tools to study the 90 year old Conjecture due
to Carathéodory:

Carathéodory Conjecture

Any C 3-smooth closed convex surface in R3 admits at least two umbilic
points.

.
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Weingarten surfaces

A surface in M3 is said to be Weingarten if the principal curvatures are
functionally related.

Surfaces in R3 such as

the standard torus,

the round spheres of radius r > 0,

Constant Mean Curvature (CMC) surfaces,

rotationally symmetric surfaces

are all Weingarten.

Weingarten surfaces – B. Guilfoyle & W. Klingenberg (2006), N. Georgiou &
B. Guilfoyle (2010)

Let S be an oriented surface in M and let Σ be the set of all oriented
geodesics that are normal to S . Then S is Weingarten if and only if the
Gauss curvature of Σ is zero.
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Minimal surfaces

Generally, a submanifold is said to be minimal if its volume is critical with
respect to any variation.
A submanifold is minimal if and only if the mean curvature is zero.

Minimal surfaces – R. Harvey &.B. Lawson (1982)

Any complex curve in L(M) is a minimal surface.

For minimal Lagrangian surfaces in the space of oriented geodesics we have
the following result:

Minimal Lagrangian surfaces – H. Anciaux & B. Guilfoyle (2009), N.
Georgiou (2012)

Let S be an oriented surface in the 3-dimensional real space form and Σ be
the set of all oriented geodesics normal to S . Then Σ is minimal if and only
if S is the equidistant tube along a geodesic.
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Hamiltonian minimal surfaces

A variation Φt of a surface Σ in LM is said to be Hamiltonian if the initial
velocity ∂tΦt |t=0 is a Hamiltonian vector field, that is, the one form Ω(X , .)
is exact.

Hamiltonian variations – N. Georgiou & G. A. Lobos (2016)

Let φt be a smooth one-parameter deformation of a surface Σ in M. Then,
the corresponding Gauss maps Φt form a Hamiltonian variation in L(M).

A Lagrangian submanifold is said to be Hamiltonian minimal if its volume
is critical under Hamiltonian variations.

Minimal Lagrangian surfaces – N. Georgiou & G. A. Lobos (2016)

Σ is Hamiltonian minimal if and only if S is a critical point of the functional

W(S) =

∫∫
S

√
H2 − K + c dA,

where H,K are respectively the mean and Gaussian curvature of S and c is
the constant curvature of the space form M.
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