# The space of oriented geodesics in 3-dimensional real space forms

Dr. Nikos Georgiou

## Waterford Institute of Technology

June 20, 2018

# The space of oriented geodesics

Consider the following 3-manifolds  $\mathbb{M} = \mathbb{R}^3, \mathbb{S}^3$ , or  $\mathbb{H}^3$  and, define the set of all oriented geodesics in  $\mathbb{M}$ :

$$\mathbb{L}(\mathbb{M}) = \{ \text{oriented geodesics in } \mathbb{M} \}.$$

Then  $\mathbb{L}(\mathbb{M})$  has a structure of a 4-dimensional manifold. In particular, we have

• 
$$\mathbb{L}(\mathbb{R}^3) = \{ (\overrightarrow{U}, \overrightarrow{V}) \in \mathbb{R}^3 \times \mathbb{R}^3 | \ \overrightarrow{U} \cdot \overrightarrow{V} = 0, \ |\overrightarrow{U}| = 1 \} = T \mathbb{S}^2.$$



# The space of oriented geodesics

•  $\mathbb{L}(\mathbb{H}^3) = \mathbb{S}^2 \times \mathbb{S}^2 - \Delta$ , where  $\Delta = \{(\mu_1, \mu_2) \in \mathbb{S}^2 \mid \mu_2 = -\mu_1\}.$ 



• 
$$\mathbb{L}(\mathbb{S}^3) = \mathbb{S}^2 \times \mathbb{S}^2$$

The dimension of the space of oriented geodesics of  $\mathbb{M}^3$  is 4.

### Jacobi Fields

A Jacobi field along the geodesic  $\gamma \subset M$  is a vector field on M that describes the difference between the geodesic and an "infinitesimally close" geodesic.

For 
$$\gamma \in \mathbb{L}(\mathbb{M}^3)$$
, the tangent space  $\mathcal{T}_\gamma \mathbb{L}(\mathbb{M}^3)$  is

 $T_{\gamma}\mathbb{L}(\mathbb{M}^3) = \{X \subset TM \mid X \text{ is an orthogonal Jacobi Field along } \gamma\}.$ 

Hitchin, in 1982, has proved that rotations of orthogonal Jacobi fields along a geodesic  $\gamma$  remains an orthogobal Jacobi field along  $\gamma$ .

# Complex structure

If  $\gamma$  is an oriented geodesic, we define the rotation  $\mathbb{J}_{\gamma} : T_{\gamma}M \to T_{\gamma}M$  about  $+\pi/2$ .

Note that for  $X \in T_{\gamma}M$  we have  $\mathbb{J}_{\gamma} \circ \mathbb{J}_{\gamma}(X) = -X$ .

Define the endomorphism

$$\mathbb{J}: T\mathbb{L}(\mathbb{M}^3) \longrightarrow T\mathbb{L}(\mathbb{M}^3): X \mapsto \mathcal{R}(X),$$

where X is a vector field on  $TL(\mathbb{M}^3)$ .

#### Complex structure

Let  $(\mathbb{M}^3, g)$  be a 3-dimensional real space form. The map  $\mathbb{J}$  is a complex structure defined on the space of oriented geodesics  $\mathbb{L}(\mathbb{M}^3)$ .

In other words,  $\mathbb J$  is a linear map such that  $\mathbb J^2=-Id$  satisfying the integrability condition.

# Symplectic structure

Let  $\nabla$  be the Levi-Civita connection of the 3-dimensional real space form  $(\mathbb{M}^3, g)$ .

We define the following 2-form  $\Omega$  in  $\mathbb{L}(\mathbb{M}^3)$ : If  $\gamma$  is an oriented geodesic in  $\mathbb{M}^3$  and X, Y are orthogonal Jacobi along  $\gamma$ , we have

## Symplectic form

$$\Omega_{\gamma}(X,Y) := g(\nabla_{\dot{\gamma}}X,Y) - g(X,\nabla_{\dot{\gamma}}Y).$$

where  $\dot{\gamma}$  is the velocity of  $\gamma$ .

- Ω is a non-degenerate.
- $\Omega$  is closed, i.e.,  $d\Omega = 0$ .

Then  $\Omega$  is a symplectic structure on  $\mathbb{L}(\mathbb{M}^3)$ 

# The neutral metric

#### Proposition

The complex structure  ${\mathbb J}$  and the symplectic structure  $\Omega$  are compatible, that is,

$$\Omega(\mathbb{J}X,\mathbb{J}Y)=\Omega(X,Y),$$

for every  $X, Y \in T\mathbb{L}(\mathbb{M}^3)$ .

We now define the following metric in  $\mathbb{L}(\mathbb{M}^3)$ :

$$\mathbb{G}(X,Y) := \Omega(\mathbb{J}X,Y)$$

#### Theorem: Properties of the metric $\mathbb{G}$

The pseudo-Riemannian metric  ${\mathbb G}$  satisfies the following properties:

- **(**)  $\mathbb{G}$  is neutral, that is, it has signature (++--).
- **2**  $(\mathbb{L}(\mathbb{M}^3), \mathbb{G})$  is locally conformally flat and scalat flat.
- **③**  $\mathbb{G}$  is invariant under the natural action of the isometry group of (M, g).

# Curves in the space of oriented geodesics

A curve in  $\mathbb{L}(\mathbb{M}^3)$  is a 1-parameter family of oriented geodesics. They correspond to ruled surfaces in M.



## Geodesics in $\mathbb{L}(\mathbb{M}^3)$

Every geodesic in  $(\mathbb{L}(\mathbb{M}^3), \mathbb{G})$  is a minimal ruled surface in M. In particular, a geodesic in  $(\mathbb{L}(\mathbb{M}^3), \mathbb{G})$  is null if and only if the corresponding ruled surface in M is totally geodesic.

A surface  $\Sigma$  in  $\mathbb{L}(\mathbb{M}^3)$  is a 2-parameter family of oriented geodesics.

Using the symplectic form  $\boldsymbol{\Omega}$  we define the following surfaces:

## Lagrangian surfaces

Let  $f: \Sigma \to \mathbb{L}(\mathbb{M}^3)$  be an immesion of a 2-manifold in  $\mathbb{L}(\mathbb{M}^3)$ . A point  $\gamma \in \Sigma$  is said to be a *Lagrangian point* if  $(f^*\Omega)(\gamma) = 0$ . If all points of  $\Sigma$  are Lagrangian, then  $\Sigma$  is said to be a *Lagrangian surface*.

We now consider a surface S in  $\mathbb{M}^3$  and take the oriented geodesics normal to S.



# The surface theory

The set of oriented geodesics normal to S is a surface in  $\mathbb{L}(\mathbb{M}^3)$  which will be denoted as  $\Sigma$ . The relation between S and  $\Sigma$  is given by the following:

## B. Guilfoyle & W. Klingenberg (2005), N. Georgiou & B. Guilfoyle (2010)

Let S be an oriented surface in M and let  $\Sigma$  be the set of all oriented geodesics that are normal to S. Then  $\Sigma$  is a Lagrangian surface. Furthermore, the metric  $\mathbb{G}_{\Sigma}$  induced on  $\Sigma$  is Lorentzian.

Using the complex structure  ${\mathbb J}$  we define the following:

#### Complex points/ Complex curve

Let  $\Sigma$  be a surface in  $\mathbb{L}(\mathbb{M}^3)$  by f. A point  $\gamma \in \Sigma$  is said to be a *complex* point if the complex structure  $\mathbb{J}$  preserves the tangent plane  $T_{\gamma}\Sigma$ . If all points of  $\Sigma$  are complex, then  $\Sigma$  is said to be a **complex curve**.

# Umbilic points

Let S be a surface in  $\mathbb{M}^3$ . A point  $p \in S$  is said to be **umbilic** if the principal curvatures are equal. They are points that are looks spherical.

Example of umbilic points:

- All points of a sphere are umbilic.
- The following ellipsoide has four umbilic points.



• The rugby ball has two umbilic points.



There exists an important relation between complex points and umbilic points.

#### Umbilic points

Let S be an oriented surface in M and let  $\Sigma$  be the Lagrangian surface formed by the normal oriented geodesics to S. Then  $p \in S$  is an umbilic point if and only if the oriented geodesic  $\gamma$  orthogonal to S at p is a complex point.

The previous result, gives new tools to study the 90 year old Conjecture due to Carathéodory:

#### Carathéodory Conjecture

Any  $C^3$ -smooth closed convex surface in  $\mathbb{R}^3$  admits at least two umbilic points.

# Weingarten surfaces

A surface in  $\mathbb{M}^3$  is said to be *Weingarten* if the principal curvatures are functionally related.

Surfaces in  $\mathbb{R}^3$  such as

- the standard torus,
- the round spheres of radius r > 0,
- Constant Mean Curvature (CMC) surfaces,
- rotationally symmetric surfaces

are all Weingarten.

Weingarten surfaces – B. Guilfoyle & W. Klingenberg (2006), N. Georgiou & B. Guilfoyle (2010)

Let S be an oriented surface in M and let  $\Sigma$  be the set of all oriented geodesics that are normal to S. Then S is Weingarten if and only if the Gauss curvature of  $\Sigma$  is zero.

# Minimal surfaces

Generally, a submanifold is said to be **minimal** if its volume is critical with respect to any variation.

A submanifold is minimal if and only if the mean curvature is zero.

#### Minimal surfaces – R. Harvey &.B. Lawson (1982)

Any complex curve in  $\mathbb{L}(\mathbb{M})$  is a minimal surface.

For minimal Lagrangian surfaces in the space of oriented geodesics we have the following result:

Minimal Lagrangian surfaces – H. Anciaux & B. Guilfoyle (2009), N. Georgiou (2012)

Let S be an oriented surface in the 3-dimensional real space form and  $\Sigma$  be the set of all oriented geodesics normal to S. Then  $\Sigma$  is minimal if and only if S is the equidistant tube along a geodesic.

A variation  $\Phi_t$  of a surface  $\Sigma$  in  $\mathbb{LM}$  is said to be Hamiltonian if the initial velocity  $\partial_t \Phi_t|_{t=0}$  is a Hamiltonian vector field, that is, the one form  $\Omega(X, .)$  is exact.

### Hamiltonian variations – N. Georgiou & G. A. Lobos (2016)

Let  $\phi_t$  be a smooth one-parameter deformation of a surface  $\Sigma$  in  $\mathbb{M}$ . Then, the corresponding Gauss maps  $\Phi_t$  form a Hamiltonian variation in  $\mathbb{L}(\mathbb{M})$ .

A Lagrangian submanifold is said to be **Hamiltonian minimal** if its volume is critical under Hamiltonian variations.

Minimal Lagrangian surfaces – N. Georgiou & G. A. Lobos (2016)

 $\Sigma$  is Hamiltonian minimal if and only if S is a critical point of the functional

$$\mathcal{W}(S) = \iint_S \sqrt{H^2 - K + c} \, dA,$$

where H, K are respectively the mean and Gaussian curvature of S and c is the constant curvature of the space form  $\mathbb{M}$ .