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Voronoi diagram of segments
Università
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• Offer a unifying framework to many concrete diagrams.
Defined on bisecting curves satisfying some axioms, rather than sites.

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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Problem history
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della
Svizzera
italiana

7



Problem history

• Simpler expected linear-time algorithm (for points).
[Chew, 1990]

• Open since then for other sites (line segments, circles etc.).

• Problem is solved for points in deterministic linear time.
[Aggarwal, Guibas, Saxe, Shore, DCG 1989]

• Open for abstract Voronoi diagrams (AVDs).
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What is difficult?

For abstract Voronoi diagrams and non-point sites (line segments, circles):

VR(s)
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The Voronoi region of one site can have multiple faces within VR(s).
– The sites along ∂VR(s) can repeat.

(AVDs: ∂VR(s) is a Davenport-Schinzel sequence of order 2.)

∂VR(s)
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Linear-time Voronoi algorithms
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– Update the order-(k + 1) diagram within an order-k region.
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• Simpler expected linear-time algorithm for the same problems.
[Chew, 1989]

• Forest-Like abstract Voronoi Diagrams [Bohler, Klein, Liu, CCCG 2014]

Similar conditions, where no region can have multiple faces.

– Update the Voronoi diagram of points, after deletion of one site.

– The farthest Voronoi diagram of points, given their convex hull.

– Update the order-(k + 1) diagram within an order-k region.
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• The medial axis of a simple polygon.
[Chin, Snoeyink, Wang, DCG 1999]
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Linear-time Voronoi algorithms

• Expected linear-time algorithm for the farthest-segment Voronoi
diagram, after the sequence of faces at infinity is known.
[Khramtcova, Papadopoulou, ISAAC 2015]
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• The medial axis of a simple polygon.
[Chin, Snoeyink, Wang, DCG 1999]
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Our results

Introduce Voronoi-like diagrams

– adapt to the farthest abstract Voronoi diagram,
after the sequence of its faces at infinity is known.

Università
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A simple, randomized incremental algorithm for updating abstract
Voronoi diagrams after deletion of one site in expected linear time.

– relaxed version of a Voronoi diagram
(easier to compute)
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Overview

• Define abstract Voronoi diagrams (AVDs).

• Define Voronoi-like diagrams.

• Define an insertion operation on Voronoi-like diagrams.

• Sketch a randomized incremental algorithm.

• Properties of Voronoi-like diagrams.
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Abstract Voronoi diagrams

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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Abstract Voronoi diagrams

J(p, q)

p
q

S abstract sites, n = |S|.

bisector

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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Abstract Voronoi diagrams

D(p, q)

J(p, q)

p
q

S abstract sites, n = |S|.

dominance region of p

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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Abstract Voronoi diagrams

D(q, p)

J(p, q)

p
q

S abstract sites, n = |S|.

dominance region of q

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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Abstract Voronoi diagrams

J(p, q)

p
q

S abstract sites, n = |S|.

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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Given a set of bisectors J := {J(p, q) : p 6= q ∈ S}.
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Abstract Voronoi diagrams

Voronoi region:

VR(p)

p
q

p
r

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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VR(p) =
⋂
q∈S\{p}D(p, q)
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Abstract Voronoi diagrams

Voronoi diagram:

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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V(S) = R2 \
⋃
p∈S VR(p, S)

13



Admissible bisector system

Given J := {J(p, q) : p 6= q ∈ S}.

(A1) Voronoi regions are non-empty and connected.

(A2) Voronoi regions cover the plane.

(A3) Bisectors are unbounded Jordan curves.

(A4) Transversal and finite # intersections.
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Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.

For every S′ ⊆ S:
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Admissible bisector system

VR(s)

Γ

VR(s)
VR(s)

• For simplicity we always assume a big circle Γ, containing all
intersections.
We restrict all computations in the interior of Γ.

Γ Γ

• VR(s) can be bounded, unbounded, and have several openings to
infinity (Γ-arcs).
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Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.
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Site deletion

Problem: Compute V(S \ s) ∩ VR(s) (within VR(s)).

VR(s)
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Site deletion

Problem: Compute V(S \ s) ∩ VR(s) (within VR(s)).

VR(s)
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Lemma: V(S \ s) ∩ VR(s) is a forest with one face
per Voronoi edge of ∂VR(s).
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Voronoi regions of arcs

Idea: Treat the boundary arcs (Voronoi edges) of VR(s) as sites.
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Voronoi regions of arcs

• Voronoi diagram of S is V(S) = V(S \ s) ∩ VR(s).

• For an arc α ∈ S, assign VR(α) = face of V(S) incident to α.

α

Idea: Treat the boundary arcs (Voronoi edges) of VR(s) as sites.

• Denote these arcs by S.

S
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Voronoi regions of arcs

• Voronoi diagram of S is V(S) = V(S \ s) ∩ VR(s).

• For an arc α ∈ S, assign VR(α) = face of V(S) incident to α.

α

Idea: Treat the boundary arcs (Voronoi edges) of VR(s) as sites.

VR(sα)

• Denote these arcs by S.

S
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Site sα can have Θ(n) faces within VR(s).
Treat each face independently (different arc).

sα = site defining α
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Wish: Voronoi diagram of a subset of arcs S ′ ⊆ S.
But that does not exist.

⊆ S
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Wish: Voronoi diagram of a subset of arcs S ′ ⊆ S.
But that does not exist.

Instead we define a Voronoi-like diagram
for a subset of arcs S ′ ⊆ S.

⊆ S
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S ′
Next: Definitions...
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p-monotone paths

Jp

Let p ∈ S be a site. Let Jp be the arrangement of all p-related bisectors.

p
rp p

t

q
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p-monotone paths

VR(p)

P

pt
p
q

Jp

sα

VR(p)

p
α

sβ

α

β

p

sα
p

sβ
p

Let p ∈ S be a site. Let Jp be the arrangement of all p-related bisectors.

p
rp p

t

q

β

p-monotone path

A path in the arrangement Jp is p-monotone, if any two adjacent edges
α, β coincide locally with the Voronoi edges of VR(p, {p, sα, sβ}).
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p-monotone paths

Jp
p
t

Let p ∈ S be a site. Let Jp be the arrangement of all p-related bisectors.

p
rp p

t

q

p-envelope

A path in the arrangement Jp is p-monotone, if any two adjacent edges
α, β coincide locally with the Voronoi edges of VR(p, {p, sα, sβ}).
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A path in Jp is the p-envelope, if it is the boundary of VR(p)
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Boundary curve

Let S ′ ⊆ S = boundary arcs (Voronoi edges) along ∂VR(s).

S ′
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⊆ S
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Boundary curve

Let S ′ ⊆ S = boundary arcs (Voronoi edges) along ∂VR(s).

S ′
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20

Consider the arrangement of all s-related bisectors of arcs in S ′.



Boundary curve

P

A boundary curve P for S ′ is an s-monotone path in the arrangement
of s-related bisectors that contains every arc in S ′.

Let S ′ ⊆ S = boundary arcs (Voronoi edges) along ∂VR(s).

S ′
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Boundary curve

A boundary curve P for S ′ is an s-monotone path in the arrangement
of s-related bisectors that contains every arc in S ′.

Let S ′ ⊆ S = boundary arcs (Voronoi edges) along ∂VR(s).

S ′

S ′ can have different boundary curves.
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Boundary curve

S ′

Γ-arc

original arc (contains an arc of S ′)

auxiliary arc
(does not contain an arc of S ′)
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Γ-arc (opening to infinity)
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Boundary curve

domain DP

S ′
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Voronoi-like diagram

P

Definition: Given a boundary curve P, the Voronoi-like diagram Vl(P) is
a subdivision of the domain DP such that:
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Voronoi-like diagram

R(α)

P

• Each boundary arc α ∈ P has one region R(α).

α

Definition: Given a boundary curve P, the Voronoi-like diagram Vl(P) is
a subdivision of the domain DP such that:
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Voronoi-like diagram

R(α)

P

• Each boundary arc α ∈ P has one region R(α).

α

Definition: Given a boundary curve P, the Voronoi-like diagram Vl(P) is
a subdivision of the domain DP such that:

α

R(α)
• ∂R(α) is an sα-monotone path plus α.
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Properties of Voronoi-like diagrams

α

R(α)

P

• Voronoi-like regions are supersets of the real Voronoi regions.
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Properties of Voronoi-like diagrams

α

R(α)

VR(α)
P

• Voronoi-like regions are supersets of the real Voronoi regions.
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Properties of Voronoi-like diagrams

• Voronoi-like regions are supersets of the real Voronoi regions.

• For all arcs S, Vl(S) equals the real diagram V(S)= V(S \ s)∩VR(s).

S
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• Missing arc lemma:
Suppose an α-related bisector appears within R(α). Then there is an
arc β “missing” from P.

P

R(α)

α
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• Missing arc lemma:
Suppose an α-related bisector appears within R(α). Then there is an
arc β “missing” from P.

P

R(α)

α

J(s, sβ) β

22



Uniqueness of Voronoi-like diagrams

Theorem:
The Voronoi-like diagram Vl(P) of a boundary curve P is unique.

P

Vl(P)
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No monotonicity property
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Voronoi-like regions do not have the standard monotonicity property of
real Voronoi regions:

Voronoi diagram: S′ ⊆ S ⇒ VR(p, S) ⊆ VR(p, S′)

Voronoi-like diagram: S ′ ⊆ S 6⇒ R(α,S) ⊆ R(α,S ′)

Use missing arc lemma instead

24



No monotonicity property
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Voronoi-like regions do not have the standard monotonicity property of
real Voronoi regions:

Voronoi diagram: S′ ⊆ S ⇒ VR(p, S) ⊆ VR(p, S′)

Voronoi-like diagram: S ′ ⊆ S 6⇒ R(α,S) ⊆ R(α,S ′)

Use missing arc lemma instead

In proofs, use missing-arc lemma instead

24
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Arc insertion

P

Vl(P)

Problem: Given a boundary curve P for S ′ ⊂ S and its Voronoi-like
diagram Vl(P), insert arc β∗ ∈ S \ S ′, prolong β∗ ⊆ β, compute R(β),
and update the diagram to Vl(P)⊕ β.
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Arc insertion

P ⊕ β

Vl(P)

Problem: Given a boundary curve P for S ′ ⊂ S and its Voronoi-like
diagram Vl(P), insert arc β∗ ∈ S \ S ′, prolong β∗ ⊆ β, compute R(β),
and update the diagram to Vl(P)⊕ β.

β
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Arc insertion

P ⊕ β

R(β)

Vl(P)

Problem: Given a boundary curve P for S ′ ⊂ S and its Voronoi-like
diagram Vl(P), insert arc β∗ ∈ S \ S ′, prolong β∗ ⊆ β, compute R(β),
and update the diagram to Vl(P)⊕ β.

β
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Arc insertion

P ⊕ β

R(β)

Problem: Given a boundary curve P for S ′ ⊂ S and its Voronoi-like
diagram Vl(P), insert arc β∗ ∈ S \ S ′, prolong β∗ ⊆ β, compute R(β),
and update the diagram to Vl(P)⊕ β.

β

Vl(P)⊕ β
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R(β)
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Arc insertion

β∗

P

• Compute the boundary curve P ⊕ β containing β (β∗ ⊆ β).
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della
Svizzera
italiana

26



Arc insertion

P ⊕ β

• Compute the boundary curve P ⊕ β containing β (β∗ ⊆ β).

β
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• Compute the merge curve J(β); it defines region R(β).

J(β)
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Arc insertion

P ⊕ β

• Compute the boundary curve P ⊕ β containing β (β∗ ⊆ β).

β
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• Compute the merge curve J(β); it defines region R(β).

• Insert R(β) in Vl(P) and derive Vl(P)⊕ β:
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Insertion of β splits an arc

Vl(P)

P
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When inserting β, a face (and its arc) may split in two, creating a new
auxiliary arc (γ′) that was not in S.
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When inserting β, a face (and its arc) may split in two, creating a new
auxiliary arc (γ′) that was not in S.

γγ′
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Insertion of β splits an arc

β
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When inserting β, a face (and its arc) may split in two, creating a new
auxiliary arc (γ′) that was not in S.

γγ′ P ⊕ β

Vl(P)⊕ β

R(β)
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Arc insertion

β

P ⊕ β

Università
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J(β)

Theorem: The merge curve J(β) is an sβ-monotone path.
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Arc insertion

β

Vl(P ⊕ β)

P ⊕ β
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J(β)

Theorem: The merge curve J(β) is an sβ-monotone path.

Theorem: Vl(P)⊕ β is the Voronoi-like diagram, Vl(P ⊕ β).
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Proof sketch
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Theorem: The merge curve J(β) is an sβ-monotone path.

Γ

β

J(β)

P

Use a bi-directional induction starting at the two endpoints of β. Show:
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Theorem: The merge curve J(β) is an sβ-monotone path.

Γ

β

J(β)

P

Use a bi-directional induction starting at the two endpoints of β. Show:

• J(β) cannot hit a boundary
arc.

• J(β) cannot get stuck on Γ.

• J(β) can visit a Voronoi-like
region at most once.

• At the end, the 2 brunches of
J(β) meet in the same region

29



Possibilities for inserting β in P

Γ

P

PP

β β

β

P

β

(a) Ordinary. (b) Delete arc. (c) Split arc.

(d) Split Γ-arc.

P

(e) Shrink Γ-arc.

P
β

(f) Trivial.

β
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A randomized incremental algorithm

Phase 2: Insert the arcs in S in reverse order one by one.

...constructing Voronoi-like diagrams within a series of shrinking domains.

Consider a random permutation of the arcs S.

Phase 1: Delete arcs from S, recording their neighbors at time of
deletion (inspired by Chew).
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della
Svizzera
italiana

31



A randomized incremental algorithm

Phase 2: Insert the arcs in S in reverse order one by one.

...constructing Voronoi-like diagrams within a series of shrinking domains.

Consider a random permutation of the arcs S.

Phase 1: Delete arcs from S, recording their neighbors at time of
deletion (inspired by Chew).

Università
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Consider a random permutation of the arcs S.
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Because of auxiliary arcs, when we insert an arc, its neighbors need not
be the ones of Phase 1. Need to trace auxiliary arcs (expected constant).
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A randomized incremental algorithm

Phase 2: Insert the arcs in S in reverse order one by one.

...constructing Voronoi-like diagrams within a series of shrinking domains.

Consider a random permutation of the arcs S.

Phase 1: Delete arcs from S, recording their neighbors at time of
deletion (inspired by Chew).

In the end we obtain Vl(S) = V(S) = V(S \ s) ∩ VR(s).
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Our main result
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Theorem:
Given V(S) and a site s ∈ S, the Voronoi diagram V(S \ {s}) can be
computed in expected time linear in the complexity of ∂VR(s).
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Our main result

• Lemma: The boundary curve at step i consists of at most 2i
arcs.

• Lemma: The expected number of arcs that are visited during
one insertion is constant.

In the proof we use:
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• Backward analysis, similar to line segments [Khramtcova,

Papadopoulou, ISAAC 2015]

Theorem:
Given V(S) and a site s ∈ S, the Voronoi diagram V(S \ {s}) can be
computed in expected time linear in the complexity of ∂VR(s).
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Future work / Open problems

Currently, we are exploring using Voronoi-like diagrams in the
framework of [Aggarwal, Guibas, Saxe and Shor, DCG 1989].

• Deterministic linear-time algorithm for deletion in abstract Voronoi
diagrams ?
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Currently, we are exploring using Voronoi-like diagrams in the
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• Deterministic linear-time algorithm for deletion in abstract Voronoi
diagrams ?

Thank you for your attention!

33


	Voronoi diagram of points
	Voronoi diagram of  segments
	Abstract Voronoi diagram
	The problem
	The problem
	Problem history
	What is difficult?
	Linear-time Voronoi algorithms
	Linear-time Voronoi algorithms
	Our results
	Abstract Voronoi diagrams
	Admissible bisector system
	Voronoi regions of arcs
	$p$-monotone paths 
	Boundary curve
	Voronoi-like diagram
	Properties of Voronoi-like diagrams
	No monotonicity property
	Arc insertion
	Arc insertion
	Arc insertion
	Proof sketch
	Possibilities for inserting $\beta$ in $\pp$
	A randomized incremental algorithm
	Our main result
	Future work / Open problems

