

Deletion in Abstract Voronoi diagrams in Expected Linear Time

Kolja Junginger and Evanthia Papadopoulou

Università della Svizzera italiana, Lugano, Switzerland

HMI Workshop, June 18-21, 2018

• Offer a unifying framework to many concrete diagrams. Defined on bisecting curves satisfying some axioms, rather than sites.

Rolf Klein. Concrete and Abstract Voronoi Diagrams. 1989.

The problem

The problem

Given: Voronoi diagram $\mathcal{V}(S)$ and a site $s \in S$.

Given: Voronoi diagram $\mathcal{V}(S)$ and a site $s \in S$.

Goal: Update $\mathcal{V}(S)$, after **deletion** of site *s*, in time **linear** in the number of changes in the diagram.

Given: Voronoi diagram $\mathcal{V}(S)$ and a site $s \in S$.

Goal: Update $\mathcal{V}(S)$, after **deletion** of site *s*, in time **linear** in the number of changes in the diagram.

Given: Voronoi region VR(s).

• Problem is **solved for points** in deterministic linear time.

[Aggarwal, Guibas, Saxe, Shore, DCG 1989]

- Problem is **solved for points** in deterministic linear time. [Aggarwal, Guibas, Saxe, Shore, DCG 1989]
- Simpler **expected linear-time** algorithm (for points). [Chew, 1990]

- Problem is **solved for points** in deterministic linear time. [Aggarwal, Guibas, Saxe, Shore, DCG 1989]
- Simpler **expected linear-time** algorithm (for points). [Chew, 1990]

- **Open** since then for other sites (line segments, circles etc.).
- **Open** for **abstract Voronoi diagrams** (AVDs).

For abstract Voronoi diagrams and non-point sites (line segments, circles):

The Voronoi region of **one site** can have **multiple faces** within VR(s). – The sites along $\partial VR(s)$ can **repeat**. (AVDs: $\partial VR(s)$ is a Davenport-Schinzel sequence of order 2.)

• The Voronoi diagram of points in **convex position**. [Aggarwal, Guibas, Saxe, Shor, DCG 1989]

- The Voronoi diagram of points in **convex position**. [Aggarwal, Guibas, Saxe, Shor, DCG 1989]
 - Update the Voronoi diagram of points, after **deletion** of one site.
 - The farthest Voronoi diagram of points, given their convex hull.
 - Update the order-(k + 1) diagram within an order-k region.

- The Voronoi diagram of points in **convex position**. [Aggarwal, Guibas, Saxe, Shor, DCG 1989]
 - Update the Voronoi diagram of points, after **deletion** of one site.
 - The farthest Voronoi diagram of points, given their convex hull.
 - Update the order-(k + 1) diagram within an order-k region.
- Simpler expected linear-time algorithm for the same problems. [Chew, 1989]

- The Voronoi diagram of points in **convex position**. [Aggarwal, Guibas, Saxe, Shor, DCG 1989]
 - Update the Voronoi diagram of points, after **deletion** of one site.
 - The farthest Voronoi diagram of points, given their convex hull.
 - Update the order-(k + 1) diagram within an order-k region.
- Simpler expected linear-time algorithm for the same problems. [Chew, 1989]
- Hamiltonian abstract Voronoi diagrams [Klein, Lingas, ISAAC 1994] Given a Hamiltonian curve, that visits every region exactly once and intersects each bisector exactly once.

- The Voronoi diagram of points in **convex position**. [Aggarwal, Guibas, Saxe, Shor, DCG 1989]
 - Update the Voronoi diagram of points, after **deletion** of one site.
 - The farthest Voronoi diagram of points, given their convex hull.
 - Update the order-(k + 1) diagram within an order-k region.
- Simpler expected linear-time algorithm for the same problems. [Chew, 1989]
- Hamiltonian abstract Voronoi diagrams [Klein, Lingas, ISAAC 1994] Given a Hamiltonian curve, that visits every region exactly once and intersects each bisector exactly once.
- Forest-Like abstract Voronoi Diagrams [Bohler, Klein, Liu, CCCG 2014] Similar conditions, where no region can have multiple faces.

• The **medial axis** of a simple polygon.

[Chin, Snoeyink, Wang, DCG 1999]

• The **medial axis** of a simple polygon.

[Chin, Snoeyink, Wang, DCG 1999]

Expected linear-time algorithm for the farthest-segment Voronoi diagram, after the sequence of faces at infinity is known.
[Khramtcova, Papadopoulou, ISAAC 2015]

Our results

Introduce Voronoi-like diagrams

 relaxed version of a Voronoi diagram (easier to compute)

Our results

Introduce Voronoi-like diagrams

 relaxed version of a Voronoi diagram (easier to compute)

A simple, **randomized incremental** algorithm for updating abstract Voronoi diagrams after **deletion** of one site **in expected linear time**.

Our results

Introduce Voronoi-like diagrams

 relaxed version of a Voronoi diagram (easier to compute)

A simple, **randomized incremental** algorithm for updating abstract Voronoi diagrams after **deletion** of one site **in expected linear time**.

- adapt to the **farthest abstract Voronoi diagram**, after the sequence of its faces at infinity is known.

- Define abstract Voronoi diagrams (AVDs).
- Define Voronoi-like diagrams.
- Properties of Voronoi-like diagrams.
- Define an **insertion** operation on Voronoi-like diagrams.
- Sketch a randomized incremental algorithm.

Given
$$\mathcal{J} := \{J(p,q) : p \neq q \in S\}.$$

For every $S' \subseteq S$:

(A1) Voronoi regions are non-empty and connected.

(A2) Voronoi regions cover the plane.

(A3) Bisectors are unbounded Jordan curves.

(A4) Transversal and finite # intersections.

- For simplicity we always assume a big circle Γ, containing all intersections.
 We restrict all computations in the interior of Γ.
- VR(s) can be bounded, unbounded, and have several openings to infinity (Γ -arcs).

Site deletion

Problem: Compute $\mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$ (within $\mathsf{VR}(s)$).

Site deletion

Problem: Compute $\mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$ (within $\mathsf{VR}(s)$).

Lemma: $\mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$ is a **forest** with **one face per Voronoi edge** of $\partial \mathsf{VR}(s)$.

Voronoi regions of arcs

Idea: Treat the boundary arcs (Voronoi edges) of VR(s) as sites.

Voronoi regions of arcs

Idea: Treat the boundary arcs (Voronoi edges) of VR(s) as sites.

• Denote these arcs by \mathcal{S} .

Idea: Treat the boundary arcs (Voronoi edges) of VR(s) as sites.

- Denote these arcs by \mathcal{S} .
- Voronoi diagram of S is $\mathcal{V}(S) = \mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$.

Idea: Treat the boundary arcs (Voronoi edges) of VR(s) as sites.

- Denote these arcs by \mathcal{S} .
- Voronoi diagram of S is $\mathcal{V}(S) = \mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$.
- For an arc $\alpha \in S$, assign $VR(\alpha)$ = face of $\mathcal{V}(S)$ incident to α .

Idea: Treat the boundary arcs (Voronoi edges) of VR(s) as sites.

- Denote these arcs by \mathcal{S} .
- Voronoi diagram of S is $\mathcal{V}(S) = \mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$.
- For an arc $\alpha \in S$, assign $VR(\alpha) = face of \mathcal{V}(S)$ incident to α .

Site s_{α} can have $\Theta(n)$ faces within VR(s). Treat each face independently (different arc).

Wish: Voronoi diagram of a subset of arcs $S' \subseteq S$. But that does not exist.

Wish: Voronoi diagram of a subset of arcs $S' \subseteq S$. But that does not exist.

> Instead we define a **Voronoi-like diagram** for a subset of arcs $S' \subseteq S$.

Wish: Voronoi diagram of a subset of arcs $S' \subseteq S$. But that does not exist.

> Instead we define a Voronoi-like diagram for a subset of arcs $S' \subseteq S$.

Next: Definitions...

p-monotone paths

Let $p \in S$ be a site. Let \mathcal{J}_p be the arrangement of all p-related bisectors.

Let $p \in S$ be a site. Let \mathcal{J}_p be the arrangement of all p-related bisectors.

A path in the arrangement \mathcal{J}_p is *p*-monotone, if any two adjacent edges α, β coincide locally with the Voronoi edges of VR $(p, \{p, s_\alpha, s_\beta\})$.

Let $p \in S$ be a site. Let \mathcal{J}_p be the arrangement of all p-related bisectors.

A path in the arrangement \mathcal{J}_p is *p*-monotone, if any two adjacent edges α, β coincide locally with the Voronoi edges of VR $(p, \{p, s_\alpha, s_\beta\})$.

A path in \mathcal{J}_p is the *p*-envelope, if it is the boundary of VR(*p*)

Let $p \in S$ be a site. Let \mathcal{J}_p be the arrangement of all p-related bisectors.

A path in the arrangement \mathcal{J}_p is *p*-monotone, if any two adjacent edges α, β coincide locally with the Voronoi edges of VR $(p, \{p, s_\alpha, s_\beta\})$.

Boundary curve

Let $\mathcal{S}' \subseteq \mathcal{S} =$ boundary arcs (Voronoi edges) along $\partial VR(s)$.

Let $\mathcal{S}' \subseteq \mathcal{S} =$ boundary arcs (Voronoi edges) along $\partial VR(s)$.

Consider the arrangement of all s-related bisectors of arcs in \mathcal{S}' .

 \mathcal{P}

 \mathcal{S}'

Let $\mathcal{S}' \subseteq \mathcal{S} =$ boundary arcs (Voronoi edges) along $\partial VR(s)$.

A boundary curve \mathcal{P} for \mathcal{S}' is an *s*-monotone path in the arrangement of *s*-related bisectors that contains every arc in \mathcal{S}' .

 \mathcal{P}

 \mathcal{S}'

Let $\mathcal{S}' \subseteq \mathcal{S} =$ boundary arcs (Voronoi edges) along $\partial VR(s)$.

A boundary curve \mathcal{P} for \mathcal{S}' is an *s*-monotone path in the arrangement of *s*-related bisectors that contains every arc in \mathcal{S}' .

 \mathcal{S}' can have different boundary curves.

Boundary curve

Boundary curve

Voronoi-like diagram

Definition: Given a boundary curve \mathcal{P} , the Voronoi-like diagram $\mathcal{V}_l(\mathcal{P})$ is a subdivision of the domain $D_{\mathcal{P}}$ such that:

Voronoi-like diagram

Definition: Given a boundary curve \mathcal{P} , the Voronoi-like diagram $\mathcal{V}_l(\mathcal{P})$ is a subdivision of the domain $D_{\mathcal{P}}$ such that:

Definition: Given a boundary curve \mathcal{P} , the Voronoi-like diagram $\mathcal{V}_l(\mathcal{P})$ is a subdivision of the domain $D_{\mathcal{P}}$ such that:

• Each boundary arc $\alpha \in \mathcal{P}$ has one region $R(\alpha)$.

Definition: Given a boundary curve \mathcal{P} , the Voronoi-like diagram $\mathcal{V}_l(\mathcal{P})$ is a subdivision of the domain $D_{\mathcal{P}}$ such that:

- Each boundary arc $\alpha \in \mathcal{P}$ has one region $R(\alpha)$.
- $\partial R(\alpha)$ is an s_{α} -monotone path plus α .

• Voronoi-like regions are supersets of the real Voronoi regions.

• Voronoi-like regions are supersets of the real Voronoi regions.

- Voronoi-like regions are supersets of the real Voronoi regions.
- For all arcs \mathcal{S} , $\mathcal{V}_l(\mathcal{S})$ equals the real diagram $\mathcal{V}(\mathcal{S}) = \mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$.

Properties of Voronoi-like diagrams

- Voronoi-like regions are supersets of the real Voronoi regions.
- For all arcs \mathcal{S} , $\mathcal{V}_l(\mathcal{S})$ equals the real diagram $\mathcal{V}(\mathcal{S}) = \mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$.
- Missing arc lemma: Suppose an α-related bisector appears within R(α). Then there is an arc β "missing" from P.

Properties of Voronoi-like diagrams

- Voronoi-like regions are supersets of the real Voronoi regions.
- For all arcs \mathcal{S} , $\mathcal{V}_l(\mathcal{S})$ equals the real diagram $\mathcal{V}(\mathcal{S}) = \mathcal{V}(S \setminus s) \cap \mathsf{VR}(s)$.
- Missing arc lemma: Suppose an α -related bisector appears within $R(\alpha)$. Then there is an arc β "missing" from \mathcal{P} . $J(s,s_{\beta})$ \mathcal{D}

Theorem:

The Voronoi-like diagram $\mathcal{V}_l(\mathcal{P})$ of a boundary curve \mathcal{P} is unique.

Voronoi-like regions do not have the standard monotonicity property of real Voronoi regions:

Voronoi diagram: $S' \subseteq S \Rightarrow \mathsf{VR}(p, S) \subseteq \mathsf{VR}(p, S')$

Voronoi-like diagram: $\mathcal{S}' \subseteq \mathcal{S} \not\Rightarrow R(\alpha, \mathcal{S}) \subseteq R(\alpha, \mathcal{S}')$

Voronoi-like regions do not have the standard monotonicity property of real Voronoi regions:

Voronoi diagram: $S' \subseteq S \Rightarrow \mathsf{VR}(p, S) \subseteq \mathsf{VR}(p, S')$

Voronoi-like diagram: $\mathcal{S}' \subseteq \mathcal{S} \not\Rightarrow R(\alpha, \mathcal{S}) \subseteq R(\alpha, \mathcal{S}')$

In proofs, use missing-arc lemma instead

- Compute the boundary curve $\mathcal{P} \oplus \beta$ containing β ($\beta^* \subseteq \beta$).
- Compute the merge curve $J(\beta)$; it defines region $R(\beta)$.

- Compute the boundary curve $\mathcal{P} \oplus \beta$ containing β ($\beta^* \subseteq \beta$).
- Compute the merge curve $J(\beta)$; it defines region $R(\beta)$.
- Insert $R(\beta)$ in $\mathcal{V}_l(\mathcal{P})$ and derive $\mathcal{V}_l(\mathcal{P}) \oplus \beta$:

- Compute the boundary curve $\mathcal{P} \oplus \beta$ containing β ($\beta^* \subseteq \beta$).
- Compute the merge curve $J(\beta)$; it defines region $R(\beta)$.
- Insert $R(\beta)$ in $\mathcal{V}_l(\mathcal{P})$ and derive $\mathcal{V}_l(\mathcal{P}) \oplus \beta$:

Theorem: The merge curve $J(\beta)$ is an s_{β} -monotone path.

Theorem: The merge curve $J(\beta)$ is an s_{β} -monotone path.

Theorem: $\mathcal{V}_l(\mathcal{P}) \oplus \beta$ is the Voronoi-like diagram, $\mathcal{V}_l(\mathcal{P} \oplus \beta)$.

Use a bi-directional induction starting at the two endpoints of β . Show:

• $J(\beta)$ cannot hit a boundary arc.

- $J(\beta)$ cannot hit a boundary arc.
- $J(\beta)$ cannot get stuck on Γ .

- $J(\beta)$ cannot hit a boundary arc.
- $J(\beta)$ cannot get stuck on Γ .
- $J(\beta)$ can visit a Voronoi-like region at most once.

- $J(\beta)$ cannot hit a boundary arc.
- $J(\beta)$ cannot get stuck on Γ .
- $J(\beta)$ can visit a Voronoi-like region at most once.
- At the end, the 2 brunches of $J(\beta)$ meet in the same region

Possibilities for inserting β in ${\cal P}$

(d) Split Γ -arc. (e) Shrink Γ -arc. (f) Trivial.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Svizzera italiana

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Svizzera italiana

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.
Consider a random permutation of the arcs \mathcal{S} .

Svizzera italiana

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Svizzera italiana

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Svizzera italiana

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Svizzera italiana

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Svizzera italiana

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

...constructing Voronoi-like diagrams within a series ϕ f shrinking domains.

Because of auxiliary arcs, when we insert an arc, its neighbors need not be the ones of Phase 1. Need to trace auxiliary arcs (expected constant).

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

Consider a random permutation of the arcs \mathcal{S} .

Phase 1: Delete arcs from S, recording their neighbors at time of deletion (inspired by Chew).

Phase 2: Insert the arcs in S in reverse order one by one.

...constructing Voronoi-like diagrams within a series of shrinking domains.

In the end we obtain $\mathcal{V}_l(\mathcal{S}) = \mathcal{V}(\mathcal{S} \setminus s) \cap \mathsf{VR}(s)$.

Theorem:

Given $\mathcal{V}(S)$ and a site $s \in S$, the Voronoi diagram $\mathcal{V}(S \setminus \{s\})$ can be computed in expected time linear in the complexity of $\partial VR(s)$.

Theorem:

Given $\mathcal{V}(S)$ and a site $s \in S$, the Voronoi diagram $\mathcal{V}(S \setminus \{s\})$ can be computed in expected time linear in the complexity of $\partial VR(s)$.

In the **proof** we use:

- Lemma: The boundary curve at step *i* consists of at most 2*i* arcs.
- Lemma: The expected number of arcs that are visited during one insertion is constant.
- Backward analysis, similar to line segments [Khramtcova, Papadopoulou, ISAAC 2015]

Future work / Open problems

• Deterministic linear-time algorithm for deletion in abstract Voronoi diagrams ?

Currently, we are exploring using Voronoi-like diagrams in the framework of [Aggarwal, Guibas, Saxe and Shor, DCG 1989].

Future work / Open problems

• Deterministic linear-time algorithm for deletion in abstract Voronoi diagrams ?

Currently, we are exploring using Voronoi-like diagrams in the framework of [Aggarwal, Guibas, Saxe and Shor, DCG 1989].

• Other uses of Voronoi-like diagrams...

Future work / Open problems

• Deterministic linear-time algorithm for deletion in abstract Voronoi diagrams ?

Currently, we are exploring using Voronoi-like diagrams in the framework of [Aggarwal, Guibas, Saxe and Shor, DCG 1989].

• Other uses of Voronoi-like diagrams...

Thank you for your attention!