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Cylindrical Algebraic Decomposition

Cylindrical Algebraic Decomposition (CAD) is an algorithm used to
tackle several problems in real algebraic geometry, such as

Quantifier Elimination (QE) over the reals,

motion planning in robotics,

“piano mover’s problem”

I’ll focus on QE over the reals.
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Cylindrical Algebraic Decomposition

Problem (Quantifier Elimination)

Given a quantified statement about polynomials fi ∈ Q[x1, . . . , xn]

Φj := Qj+1xj+1 · · ·QnxnΦ(fi ) Qi ∈ {∀, ∃} (1)

produce an equivalent Ψ(gi ) : gi ∈ Q[x1, . . . , xj ]: “equivalent” ≡
“same real solutions”.

Solution [Col75]: produce a Cylindrical Algebraic Decomposition of
Rn such that each fi is sign-invariant on each cell, and the cells are
cylindrical: ∀i , α, β the projections Px1,...,xi (Cα) and Px1,...,xi (Cβ)
are equal or disjoint. Each cell has a sample point si (normally
arranged cylindrically) and then the truth of Φ in a cell is the truth

at a sample point, and ∀xr becomes
∧

xr samples

etc.
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An example

Consider the problem ∃y∃x x2 + y2 < 1 ∧ 2x < −1.

We give CAD
the set {2x − 1, x2 + y2 − 1}, and suppose we project onto the y
axis.

The non trivial parts of our
projection are
{ 4− 4y2︸ ︷︷ ︸
discrimx (x2+y2−1)

, 4y2 − 3︸ ︷︷ ︸
resx (x2+y2−1,2x+1)

}
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Plus/Minus of CAD

+ Solves the problem given, e.g.
∀x∃y f > 0 ∧ (g = 0 ∨ h < 0)

+ The same structure solves all other problems with the
same polynomials and order of quantified variables,
e.g. ∀y f = 0 ∨ (g < 0 ∧ h > 0)

− Current algorithms can be misled by spurious
solutions. Consider {x2 + y2 − 2, (x − 6)2 + y2 − 2}.
Because x = 3, y = ±

√
−7 is a common zero,

current algorithms wrongly regard x = 3 as a critical
point over R2 (which it would be over C2).
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Plus/Minus of CAD

− Not sensitive to structure - ∧/∨ are lost in favour of
giving CAD every polynomial appearing in the
formula

− Can work very hard on trivial examples:
x < −1 ∧ x > 1 ∧ (f1(x) > 0 ∨ · · · )︸ ︷︷ ︸

irrelevant
+/− Another technique for QE, “Virtual Term

Substitution” revolves around “virtually” substituting
the roots of the polynomials appearing in the formula
into the whole formula, which is highly sensitive to
the formula structure and thus not overkill

But this means the polynomials must be solvable by
radicals, and complex roots of cubics and above
complicate matters

So only really feasible when the degrees of the
polynomials involved are low
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The original complexity of CAD

When Collins [Col75] produced his Cylindrical Algebraic

Decomposition algorithm, the complexity was O
(
d22n+8

m2n+6
)
l3k ,

where

n is the number of variables

d the maximum degree of any input polynomial in any variable

m the number of polynomials occurring in the input

k the number of occurrences of polynomials (essentially the
length)

and l the maximum coefficient length.

From now on omit l , k, and assume classical arithmetic.
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The original complexity of CAD

Given m polynomials of degree d in xn, we consider PC :

1 O(md) coefficients (degree ≤ d)

2 O(md) discriminants and subdiscriminants (degree ≤ 2d2)

3 O(m2d) resultants and subresultants (degree ≤ 2d2)

Then make square-free etc., and repeat.

(m, d)⇒ (m2d , 2d2)⇒ (2m4d4, 8d4)⇒ (32m8d12, 128d8)⇒ · · ·

This feed from d to m causes the d22n+O(1)
.
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McCallum’s Notational Idea [McC84]

Problem (Square-free Decomposition)

Generally a good idea, and often necessary. But one polynomial of
degree d might become O(

√
d) polynomials, but the degree might

not reduce. Hence (m, d) gets worse when we “improve” the
polynomials.

Say that a set of polynomials is (M,D) if it can be partitioned into
≤ M sets, with the sum of the degrees in each set ≤ D. This is
preserved under square-free, relatively prime, and even complete
factorisation, and behaves well w.r.t. operations.

Proposition

If S is an (M,D) set of polynomials in (x1, . . . , xn), then

{resxn(fi , fj) : fi , fj ∈ S} is an
(
M(M+1)

2 , 2D2
)

set,
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Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of res(f , g) at (α1, . . . , αn−1)
means that f and g cross above there, but the multiplicity of the
crossing is determined by the vanishing of subresultants.

Hence we may need the subresultants to determine the finer points
of the geometry if the resultant vanishes on a set of positive
dimension.
Given (M,D) polynomials in xn, we consider PM :

1 (MD,D) coefficients (equally, (M,D2))

2 (M, 2D2) discriminants

3 (O(M2), 2D2) resultants

(O(M2), 2D2) in all (no feed from D to M)

This works for order-invariance, rather than just sign-invariance, as
long as no polynomial is identically zero on a set of positive
dimension (“well-oriented”).
Note the curiosity that a stronger result has a better algorithm.
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of the geometry if the resultant vanishes on a set of positive
dimension.
Given (M,D) polynomials in xn, we consider PM :

1 (MD,D) coefficients (equally, (M,D2))

2 (M, 2D2) discriminants

3 (O(M2), 2D2) resultants

(O(M2), 2D2) in all (no feed from D to M)

This works for order-invariance, rather than just sign-invariance, as
long as no polynomial is identically zero on a set of positive
dimension (“well-oriented”).
Note the curiosity that a stronger result has a better algorithm.
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The Lazard projection [Laz94, MPP17]

PL is very similar to PM (only needs leading and trailing
coefficients).

What is guaranteed is Lazard-invariance, not order-invariance.
Like order-invariance, Lazard-invariance is stronger than
sign-invariance.
The lifting process is different: if a polynomial is nullified, we
divide through by the nullifying multiple (and therefore locally lift
w.r.t. a different polynomial). Hence we don’t need the
well-oriented assumption.
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Conclusions and Open Problems

1 The true complexity of quantifier elimination comes from the
logical structure, especially alternation of quantifiers.

2 The definition of cylindricity means that the results must be
applicable for all quantifier structures (with the variables in
the same order).

3 However, while the worst case is very bad, there is a lot that
can be done with the end structure.

4 Frequent recent interests involve making CAD procedures
dynamic, and optimisations in the presence of equational
constraints.
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Thanks for listening

Questions?
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