Many thanks to my supervisor James Davenport, and colleagues Akshar Nair (Bath) & Matthew England (Coventry)

Also thanks to Maplesoft, and grants EPSRC EP/J003247/1, EU H2020-FETOPEN-2016-2017-CSA project SC^2 (712689)
Cylindrical Algebraic Decomposition (CAD) is an algorithm used to tackle several problems in real algebraic geometry, such as
Cylindrical Algebraic Decomposition (CAD) is an algorithm used to tackle several problems in real algebraic geometry, such as

- Quantifier Elimination (QE) over the reals,
Cylindrical Algebraic Decomposition (CAD) is an algorithm used to tackle several problems in real algebraic geometry, such as:

- Quantifier Elimination (QE) over the reals,
- motion planning in robotics,
Cylindrical Algebraic Decomposition (CAD) is an algorithm used to tackle several problems in real algebraic geometry, such as

- Quantifier Elimination (QE) over the reals,
- motion planning in robotics,
- “piano mover’s problem”
Cylindrical Algebraic Decomposition (CAD) is an algorithm used to tackle several problems in real algebraic geometry, such as

- Quantifier Elimination (QE) over the reals,
- motion planning in robotics,
- “piano mover’s problem”

I’ll focus on QE over the reals.
Problem (Quantifier Elimination)

Given a quantified statement about polynomials \(f_i \in \mathbb{Q}[x_1, \ldots, x_n] \)

\[
\Phi_j := Q_{j+1}x_{j+1} \cdots Q_nx_n \Phi(f_i) \quad Q_i \in \{\forall, \exists\} \quad (1)
\]

produce an equivalent \(\Psi(g_i) : g_i \in \mathbb{Q}[x_1, \ldots, x_j] \): “equivalent” \(\equiv \)

“same real solutions”.
Problem (Quantifier Elimination)

Given a quantified statement about polynomials \(f_i \in \mathbb{Q}[x_1, \ldots, x_n] \)

\[
\Phi_j := Q_{j+1}x_{j+1} \cdots Q_nx_n \Phi(f_i) \quad Q_i \in \{\forall, \exists\} \quad (1)
\]

produce an equivalent \(\Psi(g_i) : g_i \in \mathbb{Q}[x_1, \ldots, x_j] \): “equivalent” \(\equiv \)
“same real solutions”.

Solution [Col75]: produce a Cylindrical Algebraic Decomposition of \(\mathbb{R}^n \) such that each \(f_i \) is sign-invariant on each cell, and the cells are \textit{cylindrical}: \(\forall i, \alpha, \beta \) the projections \(P_{x_1,\ldots,x_i}(C_\alpha) \) and \(P_{x_1,\ldots,x_i}(C_\beta) \) are equal or disjoint.
Problem (Quantifier Elimination)

Given a quantified statement about polynomials $f_i \in \mathbb{Q}[x_1, \ldots, x_n]$

$$\Phi_j := Q_{j+1}x_{j+1} \cdots Q_nx_n\Phi(f_i) \quad Q_i \in \{\forall, \exists\}$$ (1)

produce an equivalent $\Psi(g_i) : g_i \in \mathbb{Q}[x_1, \ldots, x_j]$: “equivalent” \equiv “same real solutions”.

Solution [Col75]: produce a Cylindrical Algebraic Decomposition of \mathbb{R}^n such that each f_i is sign-invariant on each cell, and the cells are cylindrical: $\forall i, \alpha, \beta$ the projections $P_{x_1,\ldots,x_i}(C_{\alpha})$ and $P_{x_1,\ldots,x_i}(C_{\beta})$ are equal or disjoint. Each cell has a sample point s_i (normally arranged cylindrically) and then the truth of Φ in a cell is the truth at a sample point, and $\forall x_r$ becomes $\bigwedge_{x_r \text{ samples}}$ etc.
Consider the problem $\exists y \exists x \ x^2 + y^2 < 1 \land 2x < -1$.
Consider the problem \(\exists y \exists x \ x^2 + y^2 < 1 \land 2x < -1 \). We give CAD the set \(\{2x - 1, x^2 + y^2 - 1\} \), and suppose we project onto the \(y \) axis.
An example

Consider the problem $\exists y \exists x \ x^2 + y^2 < 1 \land 2x < -1$. We give CAD the set \{2x - 1, x^2 + y^2 - 1\}, and suppose we project onto the y axis.

The non trivial parts of our projection are
\[
\left\{ \underbrace{4 - 4y^2}, \underbrace{4y^2 - 3} \right\}
\]
\[
discrim_x(x^2 + y^2 - 1) \quad res_x(x^2 + y^2 - 1, 2x + 1)
\]
Plus/Minus of CAD

+ Solves the problem given, e.g. \(\forall x \exists y f > 0 \land (g = 0 \lor h < 0) \)

+ The same structure solves all other problems with the same polynomials and order of quantified variables, e.g. \(\forall y f = 0 \lor (g < 0 \land h > 0) \)

− Current algorithms can be misled by spurious solutions. Consider \(\{x^2 + y^2 - 2, (x - 6)^2 + y^2 - 2\} \). Because \(x = 3, y = \pm \sqrt{-7} \) is a common zero, current algorithms wrongly regard \(x = 3 \) as a critical point over \(\mathbb{R}^2 \) (which it would be over \(\mathbb{C}^2 \)).
Solves the problem given, e.g.
\[\forall x \exists y \ f > 0 \land (g = 0 \lor h < 0) \]
Solves the problem given, e.g.
\[\forall x \exists y \ f > 0 \land (g = 0 \lor h < 0) \]

The same structure solves all other problems with the same polynomials and order of quantified variables, e.g. \[\forall y \ f = 0 \lor (g < 0 \land h > 0) \]
Solves the problem given, e.g.
\[\forall x \exists y \ f > 0 \land (g = 0 \lor h < 0) \]

The same structure solves all other problems with the same polynomials and order of quantified variables, e.g. \[\forall y \ f = 0 \lor (g < 0 \land h > 0) \]

Current algorithms can be misled by spurious solutions. Consider \(\{x^2 + y^2 - 2, (x - 6)^2 + y^2 - 2\} \). Because \(x = 3 \), \(y = \pm \sqrt{-7} \) is a common zero, current algorithms wrongly regard \(x = 3 \) as a critical point over \(\mathbb{R}^2 \) (which it would be over \(\mathbb{C}^2 \)).
Plus/Minus of CAD

- Not sensitive to structure - \land / \lor are lost in favour of giving CAD every polynomial appearing in the formula.

- Can work very hard on trivial examples: $x < -1 \land x > 1 \lor (f_1(x) > 0 \lor \cdots)$

Another technique for QE, "Virtual Term Substitution" revolves around "virtually" substituting the roots of the polynomials appearing in the formula into the whole formula, which is highly sensitive to the formula structure and thus not overkill.

But this means the polynomials must be solvable by radicals, and complex roots of cubics and above complicate matters.

So only really feasible when the degrees of the polynomials involved are low.
- Not sensitive to structure - \land/\lor are lost in favour of giving CAD every polynomial appearing in the formula

Can work very hard on trivial examples:

$x < -1 \land x > 1 \land (f_1(x) > 0 \lor \cdots)$

irrelevant

Another technique for QE, “Virtual Term Substitution” revolves around “virtually” substituting the roots of the polynomials appearing in the formula into the whole formula, which is highly sensitive to the formula structure and thus not overkill. But this means the polynomials must be solvable by radicals, and complex roots of cubics and above complicate matters. So only really feasible when the degrees of the polynomials involved are low.
Plus/Minus of CAD

- Not sensitive to structure - \wedge/\vee are lost in favour of giving CAD every polynomial appearing in the formula.
- Can work very hard on trivial examples:
 \[x < -1 \wedge x > 1 \wedge (f_1(x) > 0 \vee \cdots) \]
 \hline
 irrelevant

Another technique for QE, "Virtual Term Substitution" revolves around "virtually" substituting the roots of the polynomials appearing in the formula, which is highly sensitive to the formula structure and thus not overkill. But this means the polynomials must be solvable by radicals, and complex roots of cubics and above complicate matters. So only really feasible when the degrees of the polynomials involved are low.
Plus/Minus of CAD

- Not sensitive to structure - \land/\lor are lost in favour of giving CAD every polynomial appearing in the formula.

- Can work very hard on trivial examples:
 $$x < -1 \land x > 1 \land (f_1(x) > 0 \lor \cdots)$$

Another technique for QE, “Virtual Term Substitution” revolves around “virtually” substituting the roots of the polynomials appearing in the formula into the whole formula, which is highly sensitive to the formula structure and thus not overkill.
Plus/Minus of CAD

- Not sensitive to structure - \land/\lor are lost in favour of giving CAD every polynomial appearing in the formula.

- Can work very hard on trivial examples:
 \[x < -1 \land x > 1 \land (f_1(x) > 0 \lor \cdots) \]

Another technique for QE, “Virtual Term Substitution” revolves around “virtually” substituting the roots of the polynomials appearing in the formula into the whole formula, which is highly sensitive to the formula structure and thus not overkill.

But this means the polynomials must be solvable by radicals, and complex roots of cubics and above complicate matters.
Plus/Minus of CAD

- Not sensitive to structure - ∧/∨ are lost in favour of giving CAD every polynomial appearing in the formula
- Can work very hard on trivial examples:
 \[x < -1 \land x > 1 \land (f_1(x) > 0 \lor \cdots) \]
 irrelevant

+/- Another technique for QE, “Virtual Term Substitution” revolves around “virtually” substituting the roots of the polynomials appearing in the formula into the whole formula, which is highly sensitive to the formula structure and thus not overkill

But this means the polynomials must be solvable by radicals, and complex roots of cubics and above complicate matters

So only really feasible when the degrees of the polynomials involved are low
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was $O(d^2n^2 + 8m^2n + 6l^3k)$, where n is the number of variables, d the maximum degree of any input polynomial in any variable, m the number of polynomials occurring in the input, k the number of occurrences of polynomials (essentially the length), and l the maximum coefficient length. From now on omit l, k, and assume classical arithmetic.
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was $O \left(d^{2^{n+8}} m^{2^{n+6}} \right) l^3 k$, where

- n is the number of variables,
- d is the maximum degree of any input polynomial in any variable,
- m is the number of polynomials occurring in the input,
- k is the number of occurrences of polynomials (essentially the length), and
- l is the maximum coefficient length.

From now on omit l, k, and assume classical arithmetic.
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was \(O \left(d^{2n+8} m^{2n+6} \right) l^3 k \), where

- \(n \) is the number of variables
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was $O\left(d^{2n+8} m^{2n+6}\right) l^3 k$, where

- n is the number of variables
- d the maximum degree of any input polynomial in any variable
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was $O \left(d^{2n+8} \ m^{2n+6} \right) \ l^3 \ k$, where

- n is the number of variables
- d the maximum degree of any input polynomial in any variable
- m the number of polynomials occurring in the input
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was \(O \left(d^{2n+8} m^{2n+6} \right) l^3 k \), where

- \(n \) is the number of variables
- \(d \) is the maximum degree of any input polynomial in any variable
- \(m \) is the number of polynomials occurring in the input
- \(k \) is the number of occurrences of polynomials (essentially the length)
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was $O \left(d^{2n+8} m^{n+6} \right) l^3 k$, where

- n is the number of variables
- d the maximum degree of any input polynomial in any variable
- m the number of polynomials occurring in the input
- k the number of occurrences of polynomials (essentially the length)
- and l the maximum coefficient length.
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was $O \left(d^{2n+8} m^{2n+6} \right) l^3 k$, where

- n is the number of variables
- d the maximum degree of any input polynomial in any variable
- m the number of polynomials occurring in the input
- k the number of occurrences of polynomials (essentially the length)
- l the maximum coefficient length.
When Collins [Col75] produced his Cylindrical Algebraic Decomposition algorithm, the complexity was $O \left(d^{2n+8} m^{n+6} \right) l^3 k$, where

- n is the number of variables
- d the maximum degree of any input polynomial in any variable
- m the number of polynomials occurring in the input
- k the number of occurrences of polynomials (essentially the length)
- and l the maximum coefficient length.

From now on omit l, k, and assume classical arithmetic.
Given m polynomials of degree d in x_n, we consider P_C:
Given m polynomials of degree d in x_n, we consider P_C:

1. $O(md)$ coefficients (degree $\leq d$)
Given m polynomials of degree d in x_n, we consider P_C:

1. $O(md)$ coefficients (degree $\leq d$)
2. $O(md)$ discriminants and subdiscriminants (degree $\leq 2d^2$)
The original complexity of CAD

Given m polynomials of degree d in x_n, we consider P_C:

1. $O(md)$ coefficients (degree $\leq d$)
2. $O(md)$ discriminants and subdiscriminants (degree $\leq 2d^2$)
3. $O(m^2d)$ resultants and subresultants (degree $\leq 2d^2$)

This feed from d to m causes the $d^2n + O(1)$.

Zak Tonks
CAD: Algorithmic Real Algebraic Geometry
Given m polynomials of degree d in x_n, we consider P_C:

1. $O(md)$ coefficients (degree $\leq d$)
2. $O(md)$ discriminants and subdiscriminants (degree $\leq 2d^2$)
3. $O(m^2d)$ resultants and subresultants (degree $\leq 2d^2$)
Given m polynomials of degree d in x_n, we consider P_C:

1. $O(md)$ coefficients (degree $\leq d$)
2. $O(md)$ discriminants and subdiscriminants (degree $\leq 2d^2$)
3. $O(m^2d)$ resultants and subresultants (degree $\leq 2d^2$)

Then make square-free etc., and repeat.
Given m polynomials of degree d in x_n, we consider P_C:

1. $O(md)$ coefficients (degree $\leq d$)
2. $O(md)$ discriminants and subdiscriminants (degree $\leq 2d^2$)
3. $O(m^2d)$ resultants and subresultants (degree $\leq 2d^2$)

Then make square-free etc., and repeat.

$$(m, d) \Rightarrow (m^2d, 2d^2) \Rightarrow (2m^4d^4, 8d^4) \Rightarrow (32m^8d^{12}, 128d^8) \Rightarrow \cdots$$

This feed from d to m causes the $d^{2^{2n}+O(1)}$.
Problem (Square-free Decomposition)

Generally a good idea, and often necessary. But one polynomial of degree d might become $O(\sqrt{d})$ polynomials, but the degree might not reduce. Hence (m, d) gets worse when we “improve” the polynomials.
Problem (Square-free Decomposition)

Generally a good idea, and often necessary. But one polynomial of degree d might become $O(\sqrt{d})$ polynomials, but the degree might not reduce. Hence (m, d) gets worse when we “improve” the polynomials.

Say that a set of polynomials is (M, D) if it can be partitioned into $\leq M$ sets, with the sum of the degrees in each set $\leq D$. This is preserved under square-free, relatively prime, and even complete factorisation, and behaves well w.r.t. operations.
Problem (Square-free Decomposition)

Generally a good idea, and often necessary. But one polynomial of degree \(d \) might become \(O(\sqrt{d}) \) polynomials, but the degree might not reduce. Hence \((m,d)\) gets worse when we “improve” the polynomials.

Say that a set of polynomials is \((M,D)\) if it can be partitioned into \(\leq M\) sets, with the sum of the degrees in each set \(\leq D\). This is preserved under square-free, relatively prime, and even complete factorisation, and behaves well w.r.t. operations.

Proposition

If \(S \) is an \((M,D)\) set of polynomials in \((x_1, \ldots, x_n)\), then \(\{\text{res}_{x_n}(f_i, f_j) : f_i, f_j \in S\}\) is an \(\left(\frac{M(M+1)}{2}, 2D^2\right)\) set.
Essentially because the vanishing of $\text{res}(f, g)$ at $(\alpha_1, \ldots, \alpha_{n-1})$ means that f and g cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants.
Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of $\text{res}(f, g)$ at $(\alpha_1, \ldots, \alpha_{n-1})$ means that f and g cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.
Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of \(\text{res}(f, g) \) at \((\alpha_1, \ldots, \alpha_{n-1})\) means that \(f\) and \(g\) cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.

Given \((M, D)\) polynomials in \(x_n\), we consider \(P_M\):
Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of \(\text{res}(f, g) \) at \((\alpha_1, \ldots, \alpha_{n-1})\)
means that \(f \) and \(g \) cross above there, but the multiplicity of the
crossing is determined by the vanishing of subresultants.
Hence we may need the subresultants to determine the finer points
of the geometry if the resultant vanishes on a set of positive
dimension.

Given \((M, D)\) polynomials in \(x_n\), we consider \(P_M\):

1. \((MD, D)\) coefficients (equally, \((M, D^2))\)
Essentially because the vanishing of $\text{res}(f, g)$ at $(\alpha_1, \ldots, \alpha_{n-1})$ means that f and g cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.

Given (M, D) polynomials in x_n, we consider P_M:

1. (MD, D) coefficients (equally, (M, D^2))
2. $(M, 2D^2)$ discriminants
Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of \(\text{res}(f, g) \) at \((\alpha_1, \ldots, \alpha_{n-1})\) means that \(f \) and \(g \) cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.

Given \((M, D)\) polynomials in \(x_n\), we consider \(P_M:\)

1. \((MD, D)\) coefficients (equally, \((M, D^2)\))
2. \((M, 2D^2)\) discriminants
3. \((O(M^2), 2D^2)\) resultants
Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of \(\text{res}(f, g) \) at \((\alpha_1, \ldots, \alpha_{n-1}) \) means that \(f \) and \(g \) cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.

Given \((M, D)\) polynomials in \(x_n\), we consider \(P_M:\)

1. \((MD, D)\) coefficients (equally, \((M, D^2)\))
2. \((M, 2D^2)\) discriminants
3. \((O(M^2), 2D^2)\) resultants
 (\(O(M^2), 2D^2\) in all (no feed from \(D\) to \(M\)))

Note the curiosity that a stronger result has a better algorithm.
Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of $\text{res}(f, g)$ at $(\alpha_1, \ldots, \alpha_{n-1})$ means that f and g cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.

Given (M, D) polynomials in x_n, we consider P_M:

1. (MD, D) coefficients (equally, (M, D^2))
2. $(M, 2D^2)$ discriminants
3. $(O(M^2), 2D^2)$ resultants

$(O(M^2), 2D^2)$ in all (no feed from D to M)
Essentially because the vanishing of $\text{res}(f, g)$ at $(\alpha_1, \ldots, \alpha_{n-1})$ means that f and g cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.

Given (M, D) polynomials in x_n, we consider P_M:

1. (MD, D) coefficients (equally, (M, D^2))
2. $(M, 2D^2)$ discriminants
3. $(O(M^2), 2D^2)$ resultants

$(O(M^2), 2D^2)$ in all (no feed from D to M)

This works for order-invariance, rather than just sign-invariance,
Essentially because the vanishing of $\text{res}(f, g)$ at $(\alpha_1, \ldots, \alpha_{n-1})$ means that f and g cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.

Given (M, D) polynomials in x_n, we consider P_M:

1. (MD, D) coefficients (equally, (M, D^2))
2. $(M, 2D^2)$ discriminants
3. $(O(M^2), 2D^2)$ resultants

$(O(M^2), 2D^2)$ in all (no feed from D to M)

This works for order-invariance, rather than just sign-invariance, as long as no polynomial is identically zero on a set of positive dimension (“well-oriented”).
Why the subresultants? McCallum’s solution [McC84]

Essentially because the vanishing of $\text{res}(f, g)$ at $(\alpha_1, \ldots, \alpha_{n-1})$ means that f and g cross above there, but the multiplicity of the crossing is determined by the vanishing of subresultants. Hence we may need the subresultants to determine the finer points of the geometry if the resultant vanishes on a set of positive dimension.

Given (M, D) polynomials in x_n, we consider P_M:

1. (MD, D) coefficients (equally, (M, D^2))
2. $(M, 2D^2)$ discriminants
3. $(O(M^2), 2D^2)$ resultants

$(O(M^2), 2D^2)$ in all (no feed from D to M)

This works for order-invariance, rather than just sign-invariance, as long as no polynomial is identically zero on a set of positive dimension (“well-oriented”).

Note the curiosity that a stronger result has a better algorithm.
The Lazard projection [Laz94, MPP17]

P_L is very similar to P_M (only needs leading and trailing coefficients).

What is guaranteed is Lazard-invariance, not order-invariance. Like order-invariance, Lazard-invariance is stronger than sign-invariance. The lifting process is different: if a polynomial is nullified, we divide through by the nullifying multiple (and therefore locally lift w.r.t. a different polynomial). Hence we don't need the well-oriented assumption.
P_L is very similar to P_M (only needs leading and trailing coefficients).
What is guaranteed is Lazard-invariance, not order-invariance.
The Lazard projection [Laz94, MPP17]

P_L is very similar to P_M (only needs leading and trailing coefficients).
What is guaranteed is Lazard-invariance, not order-invariance. Like order-invariance, Lazard-invariance is stronger than sign-invariance.
P_L is very similar to P_M (only needs leading and trailing coefficients).
What is guaranteed is Lazard-invariance, not order-invariance.
Like order-invariance, Lazard-invariance is stronger than sign-invariance.
The lifting process is different: if a polynomial is nullified, we divide through by the nullifying multiple (and therefore locally lift w.r.t. a different polynomial). Hence we don’t need the well-oriented assumption.
The true complexity of quantifier elimination comes from the logical structure, especially alternation of quantifiers.

The definition of cylindricity means that the results must be applicable for all quantifier structures (with the variables in the same order).

However, while the worst case is very bad, there is a lot that can be done with the end structure.

Frequent recent interests involve making CAD procedures dynamic, and optimisations in the presence of equational constraints.
Questions?
G.E. Collins.
Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition.

D. Lazard.
An Improved Projection Operator for Cylindrical Algebraic Decomposition.
S. McCallum.
An Improved Projection Operation for Cylindrical Algebraic Decomposition.

Validity proof of Lazard’s method for CAD construction.