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Triangulations

A central subject since the early days of Computational Geometry

@ Triangulations as data structures

@ Triangulation of polygonal/polyhedral domains
@ Optimal triangulations

@ Delaunay triangulation

A central subject in Mesh Generation, Manifold Learning

@ Quality of approximation

@ Quality of elements

@ Higher dimensions

@ More general topological spaces
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@ Delaunay-like complexes
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Voronoi diagrams

A set of points P in (R?, |.||)

Voronoi cell V(pi) = {x: |lx —pil| < lx—pill, ¥}

Voronoi diagram (P) = {setofcells V(p;),pi € P}
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Delaunay Triangulations
Sur la sphere vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex Del(P) is
the nerve of Vor(P)
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Delaunay Triangulations
Sur la sphere vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex Del(P) is
the nerve of Vor(P)

Theorem

If P contains no subset of d + 2 points on a same hypersphere, then
Del(P) is a triangulation of P
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Correspondence between structures

hy, t Xgp1 = 2p; - x — p? pi = (pi,p}) = b,

duality
—

V(P)=hin...nkt
T +

D(P) = Conv_({ﬁl’ o aﬁn})

nerve
—

Voronoi diagram of P Delaunay triang. of P

The diagram commutes if P is in general position wrt spheres
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Corollaries

Combinatorial complexity

The Voronoi diagram of n points of R has the same combinatorial complexity
as the intersection of n half-spaces of R¢*!

The Delaunay triangulation of n points of R? has the same combinatorial
complexity as the convex hull of n points of R**!

The two complexities are the same by duality : @(nm) [Mc Mullen 1970]

Worst-case : points on the moment curve T'(r) = {t,7,...,1*} C R?

Quadratic in R?
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Corollaries

Algorithmic complexity

Construction of Del(P), P = {p1,...,pn} C RY
1 Lift the points of P onto the paraboloid x,,; = x> of R¥+! :
pi — pi = (pi,p})
2 Compute conv({p;})

3 Project the lower hull conv=({p;}) onto R?

Complexity : ©(nlogn + nw) [Clarkson & Shor 1989] [Chazelle 1993]
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Laguerre (power, weighted) diagrams

B={by,...,by} D(x,b) = (x —p)* — 12

Voronoi cell : V(b;) = {x : D(x,b;) < D(x,b;)Vj}
Voronoi diagram of B : = { set of cells V(b;), b; € B}
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Delaunay triangulations of balls

Vor(B) Del(B) is the nerve of Vor(B)
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Delaunay triangulations of balls

Vor(B) Del(B) is the nerve of Vor(B)

Theorem
If the balls are in general position, then Del(B) is a triangulation of a
subset P’ C P of the points

General position for balls :
no point of R has same power wrt d + 2 balls
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Correspondence between structures

hbi:xd+1=2p,-~x—p,-2+r,-2 Bi=(pi,p?—r?)=hi,»

V(B)=hfn...nh duality D(B) = conv=({by,...,b,})
T i
Voronoi diagram of B = Delaunay triang. of B

The diagram commutes if B is in general position
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Affine diagrams

Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine diagram of R? is the Laguerre diagram of a set of balls of R¢

Examples :




Delaunay triangulation restricted to a union of balls

Alpha-complex [Edelsbrunner et al.]
Yy=bNV(b Vor|;(B) = {f € Vor(B), fnU# 0}

U= Usen C(b) Del|y(B)
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Discrete metric spaces : Witness Complex (e sival

L afinite set of points (landmarks) vertices of the complex

W a dense sample (withesses) pseudo circumcenters
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Iw—pl <[w—g| Vpeo andVgeL\o
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Discrete metric spaces : Witness Complex (e sival

L afinite set of points (landmarks) vertices of the complex

W a dense sample (withesses) pseudo circumcenters

Let o be a (abstract) simplex with vertices in L, and let w € W. We say
that w is a witness of ¢ if

Iw—pl <[w—g| Vpeo andVgeL\o

The witness complex Wit(L, W) is the complex consisting of all simplexes
o such that for any simplex 7 C o, 7 has a witness in W
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Easy consequences of the definition

@ The witness complex can be defined for any metric space and, in
particular, for discrete metric spaces
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Easy consequences of the definition

@ The witness complex can be defined for any metric space and, in
particular, for discrete metric spaces

o If W' C W, then Wit(L, W') C Wit(L, W)

@ Del(L) C Wit(L, R?)
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Identity of Del(L) and Wit(L, RY) [de Silva 2008]

Theorem : Wit(L, W) C Wit(L, R?) = Del(L)

Remarks
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Identity of Del(L) and Wit(L, RY) [de Silva 2008]

Theorem @ Wit(L, W) C Wit(L, R?) = Del(L)

Remarks

» Faces of all dimensions have to be witnessed

» Wit(L, W) is embedded in R? if L is in general position wrt spheres
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Proof of de Silva’s theorem
Attali, Edelsbrunner, Mileyko 2007]

T = [po, ..., pi] iS @ k-simplex of Wit(L) witnessed by a ball B, (.e.BrNL=1)
We prove that 7 € Del(L) by induction on &

Clearly true fork =0
Hyp. : true for &' <k—1
B:=B-
B, c:=0BNT, l:=|o|
I/l o € Del(L) by the hyp.
while [+ 1 = dimo < kdo

B < the ball centered on [cw] s.t.

- o C OB,
- B witnesses 7
- |oBNTl=1+1

(B witnesses 7) A (T C O9B) = 7 € Del(L)
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Case of sampled domains : Wit(L, W) # Del(L)

W a finite set of points ¢ T¢ = RY/Z¢  (the flat torus of dimension d)

Wit(L, W) # Del(L), even if W is a dense sample of 7¢
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Relaxed witness complex

Alpha-witness Let o be a simplex with vertices in L. We say that a point
w € Wis an a-witness of o if

w=pll<lw-gqll[+a Vpeo and VgelL\o
Alpha-relaxed witness complex The a-relaxed witness complex
Wit*(L, W) is the maximal simplicial complex with vertex set L whose
simplices have an a-witness in W

Wit’ (L, W) = Wit(L, W)

Filtration :a < 8 = Wit*(L, W) C Wit?(L, W)
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Interleaving complexes

Lemma Assume that W is e-dense in T and let o > 2. Then

Wit(L, W) C Del(L) C Wit®(L, W)

Proof
o :ad-simplex of Del(L), ¢, its circumcenter
We-denseinT¢ IweW st |c, —w|<e

Forany p € 0 and ¢ € L\ o, we then have

Vpeo and gcL\o |w—pl lea =pll + llco = w
lee =gl + lleo = w
Iw =gl +2[|lco — wll

[w — gl +2¢

VAN VAN VAR VAN
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e Nets and Delaunay refinement
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Definition of e-nets  (Delone sets)

Definition
A finite set of points P is called an (=, 77)-net of a compact subset
Q c RY iff

Density: VxeQ,IpeP:|x—pl<e

Separation :Vp,qg € P : |lp —q| > ne

P is simply called an e-net if 77 is a cst that does not depend on ¢
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Existence of nets
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Lemma Any compact subset Q ¢ R¢ admits an (g, 1)-net.

Proof

While there exists a pointp € Q, d(p, P) > ¢, insert p in P
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Size of (e, 7)-nets

Case of a ball of radius r of R?

Proof
: . Vyxrd _ rr\d : . Vyx (r+2)4 4 d
Covering : n > y=75 = () Packing : n < de—(%i" = (77_2>
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Delaunay triangulations of e-nets

Lemma

Let P be an e-net of T¢ = RY/Z4  (the flat torus of dimension d)
The number of simplices of Del(P) is O(|P|)

Proof
1. The radius of the CC-ball of any d-simplex is < e

all the neighbours of a vertex p are in B(p, 2¢)

Si|oo

d
their number n, is bounded by the previous lemma : n, < ( ) =20

2. The number of simplices incident to p is at most the number of faces of the
convex hull of n, points of R?

n}g%] — 90(d)
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Randomized Incremental Construction of the

Delaunay triangulation of nets
[B., Devillers, Dutta, Glisse 2018]

A bound on the size of Del(P) is not sufficient to bound the
complexity of its construction
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Randomized Incremental Construction of the

Delaunay triangulation of nets
[B., Devillers, Dutta, Glisse 2018]

A bound on the size of Del(P) is not sufficient to bound the
complexity of its construction

Theorem 1 The expected size of the Delaunay triangulation of a
random subset S of a net P is linear in |S|

Theorem 2 If P is a net of T¢, the standard RIC algorithm computes
Del(P) in O(|P|log|P]) time
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Non-uniform nets

A finite set of points P C €2 is a ¢-net of Q if there exists two constants
cand ¢ s.t.

Density : VxeQ,IpeP: |x—p|| <co)

Separation: Vp,q€P: lp — qll > ¢ max(¢(p), ¢(q))
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Generation of ¢-nets and of meshes
Delaunay refinement [Chew 1993, Ruppert 1995, Shewchuk 2002]

Domain : Q@ =R¢/Z¢  (periodic space)

Sizing field ¢ : Q@ — R = function a-Lipschitz, o < 1
lp(x) — d(¥)] < aflx =yl

Vx € Q, 0< ¢o < p(x)

Bad simplex o : |lco —p|l > ¢(co) (co = CC of o)
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Generation of ¢-nets and of meshes
Delaunay refinement [Chew 1993, Ruppert 1995, Shewchuk 2002]

Domain : Q@ =R¢/Z¢  (periodic space)

Sizing field ¢ : Q@ — R = function a-Lipschitz, o < 1
lp(x) — d(¥)] < aflx =yl

Vx € Q, 0< ¢o < p(x)

Bad simplex o : |lco —p|l > ¢(co) (co = CC of o)

Algorithm

INIT construct a (small) initial sample P, C Q

WHILE 3 abad simplex o
insert_in_Del(c,)

RETURN a ¢-net and the associated Delaunay triangulation
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The algorithm returns a ¢-net of Q = T¢

Separation : Vp,q € P

vp € P,d(p, P\ {r}) = llp — 4l
min(é(p), ¢(q))

%o

VIVl

= the algorithm stops

—

)
Density : Vx € Q, 30, d(x,P) < |x — co| < d(cy) < 22

11—«

#(x)
l -«

(¥) (o) S talx—coll @) +ad(Co) = ¢(co) <
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Size of the sample = © (fQ ¢§l—éc)>

Upper bound

BP:B(Pvrp)s peP, Ip = %

dx dx
Jo g 2 20 I, 5

1 vol(By)
2 ey 2 A

v,
= @y [P

= CI|P|

(the B, are disjoint)

(¢(x) < o(p) +allp — x|
<20+ a)r,+ar,)
(Va4 = vol unit ball of RY)
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Size of the sample = © (fQ ¢§l—éc)>

Upper bound

BP:B(Pvrp)i 20)

2(1+a)

Jo gt 2 20 I, 56

vol(Bp
= 2+3¢1)d Z

PEP, =

v,
= @y [P

= CI|P|

Lower bound

> use the balls B, (p, f’f—’z) that cover

(the B, are disjoint)

(¢(x) < o(p) +allp — x|
<20+ a)r,+ar,)
(Va4 = vol unit ball of RY)
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Bound on the angles (2d case)

R < ¢(cape)  (cape NOt inserted)

: _ la—c]| ¢(a)
Sinb = TR 2 250w

-

D(Cape) < D(a) + a||cape — al] < $(a) + @ d(care) = Blcape) < 29

. 1 -«
= sinb >

la—c|| > ¢(a) (ainserted after c)
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Results

$(x) = o + ad(x,0Q)
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© Thick triangulations
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Delaunay refinement in higher dimensions
Returns nets but not necessarily thick simplices

Delaunay refinement allows to control the circumradii of the simplices
(density) and the separation

but not the thickness of the simplices except in 2d 34/58



A net whose Delaunay triangulation is not thick

Itei
ARsazeat!
R

@ Each squared face can be circumscribed by an empty ball

@ This remains true if we slightly perturb the points
creating arbitrarily flat simplices
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The long quest for thick triangulations

Differential topology [Cairns], [Whitehead)], [Whitney], [Munkres]
Differential geometry [Cheeger et al ]

Geometric theory of functions [Peltonen], [Saucan]
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Quality of simplices

Altitudes
¢ D(q,0)

If o, is the face opposite to g in o, the
altitude of ¢ in o is
I D(q’ U) = d(q7 aff(O'q)),
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Quality of simplices

Altitudes
¢ D(q,0)

If o, is the face opposite to g in o, the
altitude of ¢ in o is
I D(q’ U) = d(q7 aff(O'q)),

Definition (Thickness)
The thickness of a j-simplex o of diameter A(o) is

o) {1 itj=0
7= min,e, 207 otherwise
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Protection

o-protection
A Delaunay simplex o C L is §-protected if

lce —4ql| > |lco —pll+0 Vpeo and Vge L\ 0.
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Protection implies separation and thickness

Soit P un (g,7)-net, i.e.

o Vxe, dxP)<e

@ Vp,ge P, |p—gql>ne

if all d-simplices de Del(P) are je-protected, then

@ Separationof P> 6

@ Thickness : Vo € Del(P), O(c) > %
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Bad configurations

Bad configuration ¢ = (o, p)

@ oisad-simplex withR, <e¢

@ peZs(oc) where Zs(o) = B(cy,Rs + ) \ B(cs,Ry)
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Protecting Delaunay simplices using random
perturbations

Random variables : P’ a set of random points {p}, ..., p},} where
pi € B(pi,p),pi € P

Algorithm
Input: PcTp, 0

while 3 bad configuration ¢’ = (¢/,p’)
do

resample the points of ¢’

update Del(P’)

Return P’ and Del(P’)
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Analysis of the algorithm

The Local Lovasz Lemma

Let Ay, ..., Ay be a set of bad events
each occurs with proba(4;) < p < 1

Question : what is the probability that none of the events occur ?
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Analysis of the algorithm

The Local Lovasz Lemma

Let Ay, ..., Ay be a set of bad events
each occurs with proba(4;) < p < 1

Question : what is the probability that none of the events occur ?

The (easy) case of independent events

proba(—A; A ... A—Ay) > (1 —p)V >0

What happens if the events are weakly dependent ?
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Lovasz local lemma
[Lovasz & Erdés 1975]

If, fori=1,...,N,

@ A; is independent from all events except < I' of them
© proba(4;) < ﬁ e=2718...

then
proba(—A; A ... A—Ay) >0
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A constructive version of LLL
[Moser and Tardos 2010]

P a finite set of independent random variables

A a finite set pf events determined by the values of some of the variables of P
Two events are independent iff they don’t share any variable
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A constructive version of LLL
[Moser and Tardos 2010]

P a finite set of independent random variables

A a finite set pf events determined by the values of some of the variables of P

Two events are independent iff they don’t share any variable

Algorithm

forall p € P do
v, ¢ random evaluation of p ;

while some events of A occur for (p =v,,p € P) do

select (arbitrarily) such an event A € A;
for all p € variables(A) do
v, < a new random evaluation of p;

return (v,),cp ;
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Moser and Tardos theorem

Hypothesis : for all events A;, i € [1,N]

@ A; is independent from all events except < I of them

© proba(4;) < e(FITI) e=2718...

Theorem

@ The algorithm assigns values to the variables P s.t. no event of A
occurs

@ The algorithm resamples an event A € A at most times on
expectation before finding such an assignment

@ The expected total number of resamplings is at most T
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Application to the protection algorithm

We need

@ to bound the probability p that an event (bad configuration) occurs
@ to bound the maximal number I' of events that are not
independent from a given event

@ to satisfy : p < ﬁ
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Probability that (o, p) is a bad configuration

B(c,R) the CC-ball of o

Protection zone of o
Ts = B(c,R+d) \ B(c,R)

Picking region of p : B(p, p)

proba((, p) is a bad configuration) = W

5d_]
SC_;)Fd_

=C

T[>
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BoundonI"

Lemma : An event is independent from all the events except at most
I of them, where T is a constant that depends on 7, p, d and d

Proof :

@ Locality : if 2 configurations (o, p) and (¢’, p’) have a vertex in common,
all the vertices of o’ belong to the ball B(c,3r) wherer=c+p+§

@ Packing : Since P is (n — 2p)-separated,

B d(d+2) _
3 n—2p _
11_<r+ 2) B lJr6(1+p+5 1+

el

n—2p
2

)>d(d+2) Y <2d2)
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Main result

Under the condition

the algorithm stops
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Main result

Under the condition

the algorithm stops

Guarantees on the output
» dy(P,P') <p
» the d-simplices of Del(P’) are 5-protected

» and thus have a positive bound on thickness that does not depend
one
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Complexity of the algorithm

@ The number of resampling executed by the algorithm is at most
C/
T <Cn
where C” depends on 7, p, § and (exponentially) d

@ Each resampling consists in perturbing O(1) points

@ Updating the Delaunay triangulation after each resampling takes
time O(1)

@ The expected complexity is linear in the number of points
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From theory to practice

@ The bound on T" is huge, which leads to weak guarantees on
protection and thickness

@ The behaviour of the algorithm is better in practice than predicted
by the theory

@ Usefull heuristics have been proposed
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Optimal Delaunay triangulation
Variational approach [Chen 2004] [Alliez et al. 2005]

Energy

Eopr = |If = fll
(volume between the paraboloid and the approximation)

Minimizing Eopr for given P : Del(P)

Optimal position of vertex x;  (the others being fixed)

zltl

j’ — tel

YT
teN (x;)
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Optimal Delaunay triangulation
Lloyd’s relaxation [Chen 2004], [Alliez et al. 2005]
Algorithm

@ Initialize P with n points in e

_ i) [\
© Compute Del(P) Xi = Ezm \
© For each interior vertex x;, * -\
x; < x; and update Del(P) \
© If the error is small enough, stop ; otherwise go to Step 2

P S =
<N %
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Combine perturbation of vertices and mesh
optimization

Interleaved Slivers Removed
(angles > 4 deg) (angles > 10 deg)

[Tournois, Srinivasan, Alliez, 2009]
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[Tournois et al, 2009]

Results
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Results

[Tournois et al, 2009]
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[Tournois et al, 2009]

Results
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Conclusions

@ The only use of LLL in Computational Geometry ?

@ Instead of perturbing the points, one can weight the points (i.e.
perturb the metric)

@ A nice theoretical result but weak bounds
@ Efficient heuristics
@ Many applications

» 3D mesh generation (sliver removal)
» Construction of DT using only predicates of degree 2
» More tomorrow

Open problems

@ Can we obtain better bounds on protection ?
@ Thick triangulation of a bounded domain (e.g. a simplex) ?
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