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Triangulations

A central subject since the early days of Computational Geometry

Triangulations as data structures
Triangulation of polygonal/polyhedral domains
Optimal triangulations
Delaunay triangulation

A central subject in Mesh Generation, Manifold Learning

Quality of approximation
Quality of elements
Higher dimensions
More general topological spaces
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1 Delaunay-like complexes

2 Nets and Delaunay refinement

3 Thick triangulations
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Voronoi diagrams

A set of points P in (Rd, ‖.‖)

Voronoi cell V(pi) = {x : ‖x− pi‖ ≤ ‖x− pj‖, ∀j}

Voronoi diagram (P) = { set of cells V(pi), pi ∈ P }
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Delaunay Triangulations
Sur la sphère vide (On the empty sphere), Boris Delaunay (1934)

The Delaunay complex Del(P) is
the nerve of Vor(P)

Theorem
If P contains no subset of d + 2 points on a same hypersphere, then
Del(P) is a triangulation of P
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Correspondence between structures

hpi : xd+1 = 2pi · x− p2
i p̂i = (pi, p2

i ) = h∗pi

V(P) = h+
p1
∩ . . . ∩ h+

pn

duality−→ D(P) = conv−({p̂1, . . . , p̂n})
↑ ↓

Voronoi diagram of P nerve−→ Delaunay triang. of P

The diagram commutes if P is in general position wrt spheres
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Corollaries
Combinatorial complexity

The Voronoi diagram of n points of Rd has the same combinatorial complexity
as the intersection of n half-spaces of Rd+1

The Delaunay triangulation of n points of Rd has the same combinatorial
complexity as the convex hull of n points of Rd+1

The two complexities are the same by duality : Θ(nd d
2e) [Mc Mullen 1970]

Worst-case : points on the moment curve Γ(t) = {t, t2, ..., td} ⊂ Rd

Quadratic in R3
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Corollaries
Algorithmic complexity

Construction of Del(P), P = {p1, ..., pn} ⊂ Rd

1 Lift the points of P onto the paraboloid xd+1 = x2 of Rd+1 :
pi → p̂i = (pi, p2

i )

2 Compute conv({p̂i})
3 Project the lower hull conv−({p̂i}) onto Rd

Complexity : Θ(n log n + nd
d
2 e) [Clarkson & Shor 1989] [Chazelle 1993]
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Laguerre (power, weighted) diagrams

B = {b1, ..., bn} D(x, b) = (x− p)2 − r2

Voronoi cell : V(bi) = {x : D(x, bi) ≤ D(x, bj)∀j}

Voronoi diagram of B : = { set of cells V(bi), bi ∈ B}
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Delaunay triangulations of balls

Vor(B) Del(B) is the nerve of Vor(B)

Theorem
If the balls are in general position, then Del(B) is a triangulation of a
subset P ′ ⊆ P of the points

General position for balls :
no point of Rd has same power wrt d + 2 balls
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Affine diagrams

Sites + distance functions s.t. the bisectors are hyperplanes

Theorem [Aurenhammer]

Any affine diagram of Rd is the Laguerre diagram of a set of balls of Rd

Examples :
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Delaunay triangulation restricted to a union of balls
Alpha-complex [Edelsbrunner et al.]

C(b) = b ∩ V(b) Vor|U(B) = {f ∈ Vor(B), f ∩ U 6= ∅}
U =

⋃
b∈B C(b) Del|U(B)
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Discrete metric spaces : Witness Complex [de Silva]

L a finite set of points (landmarks) vertices of the complex

W a dense sample (witnesses) pseudo circumcenters
The Witness Complex
Wit(L, W )

�
w

Definition

� 2Wit(L, W )
()

8⌧  � 9w 2W with
d(w, p)  d(w, q)
8p 2 � 8q 2 L \ �

L : Landmarks (black dots); the vertices of the complex
W : Witnesses (blue dots)

R. Dyer (INRIA) Del(L, M) = Wit(L, W ) Assisi, EuroCG 2012 2 / 10

Let σ be a (abstract) simplex with vertices in L, and let w ∈ W. We say
that w is a witness of σ if

‖w− p‖ ≤ ‖w− q‖ ∀p ∈ σ and ∀q ∈ L \ σ

The witness complex Wit(L,W) is the complex consisting of all simplexes
σ such that for any simplex τ ⊆ σ, τ has a witness in W
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Easy consequences of the definition

The witness complex can be defined for any metric space and, in
particular, for discrete metric spaces

If W ′ ⊆ W, then Wit(L,W ′) ⊆Wit(L,W)

Del(L) ⊆Wit(L,Rd)
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Identity of Del(L) and Wit(L,Rd) [de Silva 2008]

Theorem : Wit(L,W) ⊆Wit(L,Rd) = Del(L)

Remarks

I Faces of all dimensions have to be witnessed

I Wit(L,W) is embedded in Rd if L is in general position wrt spheres
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Proof of de Silva’s theorem
Attali, Edelsbrunner, Mileyko 2007]

τ = [p0, ..., pk] is a k-simplex of Wit(L) witnessed by a ball Bτ (i.e. Bτ ∩ L = τ )

We prove that τ ∈ Del(L) by induction on k

Clearly true for k = 0

Bσ

c

w

Bτ

τ

σ

Hyp. : true for k′ ≤ k − 1

B := Bτ

σ := ∂B ∩ τ , l := |σ|

// σ ∈ Del(L) by the hyp.

while l + 1 = dimσ < k do

B← the ball centered on [cw] s.t.

- σ ⊂ ∂B,

- B witnesses τ

- |∂B ∩ τ | = l + 1

(B witnesses τ) ∧ (τ ⊂ ∂B) ⇒ τ ∈ Del(L)
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Case of sampled domains : Wit(L,W) 6= Del(L)

W a finite set of points ⊂ Td = Rd/Zd (the flat torus of dimension d)

Wit(L,W) 6= Del(L), even if W is a dense sample of Td

a
b

Vor(a, b)

[ab] ∈Wit(L,W) ⇔ ∃p ∈ W, Vor2(a, b) ∩W 6= ∅
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Relaxed witness complex

Alpha-witness Let σ be a simplex with vertices in L. We say that a point
w ∈ W is an α-witness of σ if

‖w− p‖ ≤ ‖w− q‖+ α ∀p ∈ σ and ∀q ∈ L \ σ

Alpha-relaxed witness complex The α-relaxed witness complex
Witα(L,W) is the maximal simplicial complex with vertex set L whose
simplices have an α-witness in W

Wit0(L,W) = Wit(L,W)

Filtration : α ≤ β ⇒ Witα(L,W) ⊆Witβ(L,W)
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Interleaving complexes

Lemma Assume that W is ε-dense in Td and let α ≥ 2ε. Then

Wit(L,W) ⊆ Del(L) ⊆Witα(L,W)

Proof

σ : a d-simplex of Del(L), cσ its circumcenter

W ε-dense in Td ∃w ∈ W s.t. ‖cσ − w‖ ≤ ε
For any p ∈ σ and q ∈ L \ σ, we then have

∀p ∈ σ and q ∈ L \ σ ‖w− p‖ ≤ ‖cσ − p‖+ ‖cσ − w‖
≤ ‖cσ − q‖+ ‖cσ − w‖
≤ ‖w− q‖+ 2‖cσ − w‖
≤ ‖w− q‖+ 2ε
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1 Delaunay-like complexes

2 Nets and Delaunay refinement

3 Thick triangulations
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Definition of ε-nets (Delone sets)

Definition

A finite set of points P is called an (ε, η̄)-net of a compact subset
Ω ⊂ Rd iff

Density : ∀x ∈ Ω,∃p ∈ P : ‖x− p‖ ≤ ε
Separation : ∀p, q ∈ P : ‖p− q‖ ≥ η̄ ε

P is simply called an ε-net if η̄ is a cst that does not depend on ε
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Existence of nets

Lemma Any compact subset Ω ⊂ Rd admits an (ε, 1)-net.

Proof

While there exists a point p ∈ Ω, d(p,P) ≥ ε, insert p in P
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Size of (ε, η̄)-nets
Case of a ball of radius r of Rd

Lemma
( r
ε

)d ≤ n(ε, η̄) ≤
((

4
η̄

)d
×
( r
ε

)d
)

Proof

Covering : n ≥ Vd×rd

Vd×εd =
( r
ε

)d Packing : n ≤ Vd×(r+ η
2 )d

Vd×( η
2 )d ≤

(
4r
η̄ε

)d
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Delaunay triangulations of ε-nets

Lemma
Let P be an ε-net of Td = Rd/Zd (the flat torus of dimension d)
The number of simplices of Del(P) is O(|P|)

Proof

1. The radius of the CC-ball of any d-simplex is ≤ ε
all the neighbours of a vertex p are in B(p, 2ε)

their number np is bounded by the previous lemma : np ≤
(

8
η̄

)d
= 2O(d)

2. The number of simplices incident to p is at most the number of faces of the
convex hull of np points of Rd

nb
d
2 c

p = 2O(d2)
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Randomized Incremental Construction of the
Delaunay triangulation of nets
[B., Devillers, Dutta, Glisse 2018]

Z A bound on the size of Del(P) is not sufficient to bound the
complexity of its construction

Theorem 1 The expected size of the Delaunay triangulation of a
random subset S of a net P is linear in |S|

Theorem 2 If P is a net of Td, the standard RIC algorithm computes
Del(P) in O(|P| log |P|) time
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Non-uniform nets

A finite set of points P ⊂ Ω is a φ-net of Ω if there exists two constants
c and c′ s.t.

Density : ∀x ∈ Ω,∃p ∈ P : ‖x− p‖ ≤ cφ(x)

Separation : ∀p, q ∈ P : ‖p− q‖ ≥ c′ max(φ(p), φ(q))
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Generation of φ-nets and of meshes
Delaunay refinement [Chew 1993, Ruppert 1995, Shewchuk 2002]

Domain : Ω = Rd/Zd (periodic space)

Sizing field φ : Ω→ R = function α-Lipschitz, α < 1
|φ(x)− φ(y)| ≤ α ‖x− y‖

∀x ∈ Ω, 0 < φ0 ≤ φ(x)

Base of Delaunay refinement 1.

• use Delaunay (and constrained Delaunay) triangulations

• kill bad triangles by circumcenter insertion

Definition (Bad triangle)
A triangle is bad if :
- either is oversized
- or its radius-edge ratio ⇢ is greater than a constant B.

⇢ � B () sin↵  1

2B

() ↵  arcsin
1

2B

Bad simplex σ : ‖cσ − p‖ > φ(cσ) (cσ = CC of σ)

Algorithm
INIT construct a (small) initial sample P0 ⊂ Ω

WHILE ∃ a bad simplex σ
insert_in_Del(cσ)

RETURN a φ-net and the associated Delaunay triangulation
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The algorithm returns a φ-net of Ω = Td

Separation : ∀p, q ∈ P

∀p ∈ P, d(p,P \ {p}) = ‖p− q‖
≥ min(φ(p), φ(q))
≥ φ0

⇒ the algorithm stops

Density : ∀x ∈ Ω, ∃σ, d(x,P) ≤ ‖x− cσ‖ ≤ φ(cσ)
(∗)
≤ φ(x)

1−α

(∗) φ(cσ) ≤ φ(x) + α ‖x− cσ‖ ≤ φ(x) + αφ(Cσ) ⇒ φ(cσ) ≤
φ(x)

1− α
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Size of the sample = Θ
(∫

Ω
dx
φd(x)

)

Upper bound

Bp = B(p, rp), p ∈ P, rp = φ(p)
2(1+α)∫

Ω
dx

φd(x) ≥
∑

p

∫
Bp

dx
φd(x) (the Bp are disjoint)

≥ 1
(2+3α)d

∑
p

vol(Bp)

rd
p

(φ(x) ≤ φ(p) + α ‖p− x‖
≤ 2(1 + α) rp + α rp)

= Vd
(2+3α)d |P| (Vd = vol unit ball of Rd)

= C |P|

Lower bound
I use the balls B′p(p, φ(p)

1−α ) that cover Ω
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Bound on the angles (2d case)

‖a− c‖ ≥ φ(a) (a inserted after c)

R ≤ φ(cabc) (cabc not inserted)

sin b = ‖a−c‖
2R ≥ φ(a)

2φ(cabc)

φ(cabc) ≤ φ(a) + α ‖cabc − a‖ ≤ φ(a) + αφ(cabc) ⇒ φ(cabc) ≤ φ(a)
1−α

⇒ sin b ≥ 1− α
2
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Results

φ(x) = φ0 + αd(x, ∂Ω)

2D Mesh Optimization

Application to 2D isotropic triangle mesh generation and

isotropic surface remeshing.

Mesh Generation
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1 Delaunay-like complexes

2 Nets and Delaunay refinement

3 Thick triangulations
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Delaunay refinement in higher dimensions
Returns nets but not necessarily thick simplices

CGALmesh Achievements

Meshing 3D domains
Input from segmented 3D medical images

[INSERM] [SIEMENS]

PA-MY (INRIA Geometrica) CGALmesh ARC-ADT-AE-2010 22 / 36

Delaunay refinement allows to control the circumradii of the simplices
(density) and the separation

but not the thickness of the simplices except in 2d 34 / 58



A net whose Delaunay triangulation is not thick

! !

!"#$%&"'(&")"&*+,-'".$",)+/,
0$"('12'3%,4$+/,'".$&#4$+/,'

!"#$%"#&'"#!"#"$%&'()*!"+"(",-#()#&'"#*+,$&#-.#*/01"2

##

345$+6&*(+%7#%$8)06"#,0&6'"%#
####################5#()./0&(#9"&:""+#3#/0&"8*0;%

<45$+6&*(+%7#=*1*&0;#"=1"%
####################5#&"-0&(#9"&:""+#-#(8#/(8"#/0&"8*0;%

>45$+6&*(+%7#6(8+"8#?"8&*6"%
5#1,"-$0&(#9"&:""+#@#(8#/(8"#/0&"8*0;%#

Each squared face can be circumscribed by an empty ball

This remains true if we slightly perturb the points
creating arbitrarily flat simplices
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The long quest for thick triangulations

Differential topology [Cairns], [Whitehead], [Whitney], [Munkres]

Differential geometry [Cheeger et al.]

Geometric theory of functions [Peltonen], [Saucan]
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Quality of simplices

Altitudes
D(q, σ)

σq

q

If σq is the face opposite to q in σ, the
altitude of q in σ is

D(q, σ) = d(q, aff(σq)),

Definition (Thickness)
The thickness of a j-simplex σ of diameter ∆(σ) is

Θ(σ) =

{
1 if j = 0
minp∈σ

D(p,σ)
j∆(σ) otherwise
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Protection

δ

cσ

δ-protection
A Delaunay simplex σ ⊂ L is δ-protected if

‖cσ − q‖ > ‖cσ − p‖+ δ ∀p ∈ σ and ∀q ∈ L \ σ.
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Protection implies separation and thickness

Soit P un (ε, η̄)-net, i.e.

∀x ∈ Ω, d(x,P) ≤ ε

∀p, q ∈ P, ‖p− q‖ ≥ η̄ε

if all d-simplices de Del(P) are δ̄ε-protected, then

Separation of P : η̄ ≥ δ̄

Thickness : ∀σ ∈ Del(P), Θ(σ) ≥ δ̄2

8d

c c′
θ θ̃

B

B′
B′+δ

q
q̃

H

˜H
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Bad configurations

δ

cσ

Bad configuration φ = (σ, p)

σ is a d-simplex with Rσ ≤ ε

p ∈ Zδ(σ) where Zδ(σ) = B(cσ,Rσ + δ) \ B(cσ,Rσ)
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Protecting Delaunay simplices using random
perturbations

Random variables : P ′ a set of random points {p′1, ..., p′n} where
p′i ∈ B(pi, ρ), pi ∈ P

δ

cσ

Algorithm

Input : P ∈ Td, ρ, δ

while ∃ bad configuration φ′ = (σ′, p′)
do

resample the points of φ′

update Del(P ′)

Return P′ and Del(P ′)
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Analysis of the algorithm
The Local Lovasz Lemma

Let A1, ...,AN be a set of bad events
each occurs with proba(Ai) ≤ p < 1

Question : what is the probability that none of the events occur ?

The (easy) case of independent events

proba(¬A1 ∧ ... ∧ ¬AN) ≥ (1− p)N > 0

What happens if the events are weakly dependent ?
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Lovász local lemma
[Lovász & Erdös 1975]

If, for i = 1, ...,N,

1 Ai is independent from all events except ≤ Γ of them

2 proba(Ai) ≤ 1
e (Γ+1) e = 2.718...

then
proba(¬A1 ∧ ... ∧ ¬AN) > 0
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A constructive version of LLL
[Moser and Tardos 2010]

P a finite set of independent random variables

A a finite set pf events determined by the values of some of the variables of P
Two events are independent iff they don’t share any variable

Algorithm

for all p ∈ P do
vp ← random evaluation of p ;

while some events of A occur for (p = vp, p ∈ P) do

select (arbitrarily) such an event A ∈ A ;
for all p ∈ variables(A) do

vp ← a new random evaluation of p ;

return (vp)p∈P ;

44 / 58



A constructive version of LLL
[Moser and Tardos 2010]

P a finite set of independent random variables

A a finite set pf events determined by the values of some of the variables of P
Two events are independent iff they don’t share any variable

Algorithm

for all p ∈ P do
vp ← random evaluation of p ;

while some events of A occur for (p = vp, p ∈ P) do

select (arbitrarily) such an event A ∈ A ;
for all p ∈ variables(A) do

vp ← a new random evaluation of p ;

return (vp)p∈P ;

44 / 58



Moser and Tardos theorem

Hypothesis : for all events Ai, i ∈ [1,N]

1 Ai is independent from all events except ≤ Γ of them

2 proba(Ai) ≤ 1
e (Γ+1) e = 2.718...

Theorem

The algorithm assigns values to the variables P s.t. no event of A
occurs
The algorithm resamples an event A ∈ A at most 1

Γ times on
expectation before finding such an assignment

The expected total number of resamplings is at most N
Γ
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Application to the protection algorithm

δ

cσ

We need

to bound the probability p that an event (bad configuration) occurs

to bound the maximal number Γ of events that are not
independent from a given event

to satisfy : p ≤ 1
e (Γ+1)
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Probability that (σ, p) is a bad configuration

Tδ

R + δ

R

ρ

c
σ

p B(c,R) the CC-ball of σ

Protection zone of σ
Tδ = B(c,R + δ) \ B(c,R)

Picking region of p : B(p, ρ)

proba((σ, p) is a bad configuration) = vol(Tδ∩B(p,ρ))
vol(B(p,ρ))

≤ C δ ρd−1

ρd

= C δ
ρ
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Bound on Γ

Lemma : An event is independent from all the events except at most
Γ of them, where Γ is a constant that depends on η̄, ρ̄, δ̄ and d

Proof :

c

3r

Locality : if 2 configurations (σ, p) and (σ′, p′) have a vertex in common,
all the vertices of σ′ belong to the ball B(c, 3r) where r = ε+ ρ+ δ

Packing : Since P is (η − 2ρ)-separated,

Γ =

(
3r + η−2ρ

2
η−2ρ

2

)d(d+2)

=

(
1 + 6

(1 + ρ̄+ δ̄) (1 + ρ̄)

η̄ − 2ρ̄

)d(d+2)

= O
(

2d2
)
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Main result

Under the condition

eC√
d

(Γ + 1) δ̄ ≤ ρ̄ ≤ η̄

4

the algorithm stops

Guarantees on the output
I dH(P,P ′) ≤ ρ
I the d-simplices of Del(P ′) are δ-protected

I and thus have a positive bound on thickness that does not depend
on ε
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Complexity of the algorithm

The number of resampling executed by the algorithm is at most

C′n
Γ
≤ C′′ n

where C′′ depends on η̄, ρ̄, δ̄ and (exponentially) d

Each resampling consists in perturbing O(1) points

Updating the Delaunay triangulation after each resampling takes
time O(1)

The expected complexity is linear in the number of points
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From theory to practice

The bound on Γ is huge, which leads to weak guarantees on
protection and thickness

The behaviour of the algorithm is better in practice than predicted
by the theory

Usefull heuristics have been proposed
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Optimal Delaunay triangulation
Variational approach [Chen 2004] [Alliez et al. 2005]

Energy

EODT = ‖f − f̂‖L1

(volume between the paraboloid and the approximation)

Minimizing EODT for given P : Del(P)

Optimal position of vertex xi (the others being fixed)

Lecture 3 Mesh Optimization
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Optimal Delaunay triangulation
Lloyd’s relaxation [Chen 2004], [Alliez et al. 2005]

Algorithm

1 Initialize P with n points in Ω

2 Compute Del(P)

3 For each interior vertex xi,
xi ← x∗i and update Del(P)

4 If the error is small enough, stop ; otherwise go to Step 2Lecture 3 Mesh Optimization
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Combine perturbation of vertices and mesh
optimization
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Results [Tournois et al, 2009]
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Conclusions

The only use of LLL in Computational Geometry ?

Instead of perturbing the points, one can weight the points (i.e.
perturb the metric)

A nice theoretical result but weak bounds

Efficient heuristics

Many applications

I 3D mesh generation (sliver removal)
I Construction of DT using only predicates of degree 2
I More tomorrow

Open problems

Can we obtain better bounds on protection ?
Thick triangulation of a bounded domain (e.g. a simplex) ?
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