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Introduction

Temporary disclaimer

These notes are still in draft form and should be considered, for the time
being, a rough guide to accompany the lectures. The lecturers appologise
for any and all omissions/errors/typos. We are happy to receive feedback!
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Lecture 1

Floer homologies for
three-manifolds

Floer homology assigns an abelian group to a closed oriented 3-manifold.
There are a variety of ways to do this (Heegaard Floer homology, monopole
Floer homology, ECH, Manolescu-Woodward, instanton Floer). By now it’s
known that the first three of these theories are isomorphic, although their
relation to the original instanton Floer homology is still not well understood.
These different methods all have their own advantages and disadvantages,
but in these lectures we’ll only use Heegaard Floer homology.

It’s perhaps useful to consider the analogy with ordinary homology, where
there are many different ways (singular homology, Cech cohomology, de
Rham cohomology) of defining what is essentially the same invariant. For
ordinary homology, we have the Eilenberg-Steenrod axioms, which spell out
the key properties of ordinary homology, and which completely determine
it on reasonable spaces (CW complexes). For Floer homology, we have (as
yet) no such thing. But in this lecture we’ll adopt an Eilenberg-Steenrod
approach, and describe at least some of the basic properties that a Floer
homology for three-manifolds should have. In the next lecture, we’ll see
how Heegaard Floer homology realizes these properties.
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1.1 TQFT structure

From now on, we’ll assume that all three-manifolds Y are closed, connected,
and oriented. In its simplest incarnation, Floer homology assigns to such a
Y an abelian group ĤF (Y ).

Property 1. ĤF (Y1#Y2) = ĤF (Y1) ⊗ ĤF (Y2). ĤF (−Y ) = ĤF (Y )∗c ,

where by ∗c we denote the chain level dual (i.e. if ĤF (Y ) = H∗(C),

ĤF (−Y ) = H∗(C
∗). )

Example 1.1. ĤF (S3) = Z.

Definition 1.2. A cobordism W : Y1 → Y2 is an oriented smooth 4-manifold
W with ∂W = −Y1

∐
Y2.

Example 1.3. B4 : ∅ → S3 is a very simple cobordism. If K ⊂ S3 is
a knot, let Wp(K) : S3 → Kp be the cobordism defined by attaching a
p-framed 2-handle to K.

A cobordism W : Y1 → Y2 induces a map F̂W : ĤF (Y1) → ĤF (Y2), which
is well defined up to an overall sign. (If we want to fix the sign, we’d have
to choose an orientation on H1(W )⊕H2

+(W )⊕H1(Y2).)

Example 1.4. If W = B4 : ∅ → S3, F̂W : Z→ Z is the identity map.

Example 1.5. We could equally well view W as a cobordism r(W ) : −Y2 →
−Y1. The induced map F̂r(W ) : ĤF (−Y2)→ ĤF (Y1) is the chain level dual

of F̂ . NB: There is another cobordism −W : −Y1 → −Y2. The maps F̂−W
and F̂W are unrelated.

If W1 : Y1 → Y2,W2 : Y2 → Y3 are cobordisms, their composition W2◦W1 :=
W1 ∪Y2 W2 is a cobordism from Y1 → Y3.

Property 2. F̂W2◦W1 := ±F̂W2 ◦ F̂W1 .

In somewhat fancier language, this says that ĤF defines a projective functor
from the 3 + 1 dimensional cobordism category to the category of abelian
groups and linear maps. In other words, ĤF is a 3 + 1 dimensional TQFT.

Remark 1.6. By viewing M4 as a cobordism M : ∅ → ∅, we get a map
F̂M : Z → Z. This is not the Seiberg-Witten invariant of M . Instead, it is
determined completely by the ring structure on H∗(M).
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1.2 Spinc structures

An important property of ĤF (Y ) is that it decomposes as a direct sum over
Spinc structures on Y . We’ll leave the definition of a Spinc structure to the
exercises, and instead describe a few relevant properties:

• Let M be a 3– or 4–manifold. The set Spinc(M) of Spinc structures
on a manifold M is an affine copy of H2(M) (by which we mean
that H2(M) acts freely and transitively on Spinc(M), but there is no
natural 0, so we can’t add Spinc structures. )

• There’s a map c1 : Spinc(M) → H2(M) which satisfies c1(y + s) =
2y + c1(s).

• If M = Y is a 3-manifold, c1(s) ≡ 0 mod 2 for all s ∈ Spinc(Y ).

• If M = W is a 4-manifold, 〈c1(s), x〉 ≡ x ·x mod 2 for all x ∈ H2(W ).

• If Y = ∂W , there is a restriction map |Y : Spinc(W ) → Spinc(Y ).
This is compatible with restriction on cohomology, in the sense that
c1(s|Y ) = i∗(c1(s)), and (y + s)|Y = i∗(y) + s|Y .

• There’s an involution s 7→ s on Spinc(M). c1(s) = −c1(s).

Example 1.7. IfH2(Y ) has no 2-torsion, we can canonically identify Spinc(Y )
with H2(Y ).

Example 1.8. Let W = Wp(K). H2(W ) = Z〈y〉. If Σ is a Seifert surface

for K H2(W ) = Z is generated by [Σ̂], where Σ̂ is the closed surface obtained
by capping Σ off with the core of the two-handle. Σ · Σ = p, so

Spinc(W )↔ {c1(s) | s ∈ Spinc(W )} = {ky | k ≡ p mod 2}.

We let sk be the Spinc structure with c1(sk) = ky.

Property 3. There is a decomposition

ĤF (Y ) =
⊕

s∈Spinc(Y )

ĤF (Y, s).

Moreover, ĤF (Y, s) = 0 for all but finitely many s.
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Property 4. If W : Y1 → Y2 and s ∈ Spinc(W ), there is an induced map

F̂W,s : ĤF (W, s|Y1)→ ĤF (W, s|Y2).

F̂W,s is 0 for all but finitely many s, and F̂W =
∑

s F̂W,s.

Property 5. (Conjugation symmetry). There are isomorphisms

ι : ĤF (Y, s)→ ĤF (Y, s),

and ι ◦ F̂W,s = ±F̂W,s ◦ ι.

Property 6. Suppose W1 : Y1 → Y2, W2 : Y2 → Y3 are cobordisms. If Y2 is
a rational homology sphere, then FW2◦W1,s = FW2,s|W2

◦ FW1,s|W1
.

If Y is not a rational homology sphere, the analog of property 6 is a bit harder
to state. To understand the issue, consider the Mayer-Vietoris sequence for
H∗(W ), where W = W1 ∪Y2 W2:

→ H1(W1)⊕H1(W2)
i∗1⊕i∗2−−−→ H1(Y2)→ H2(W )→ H2(W1)⊕H2(W2)→ .

If the map i∗ is not surjective, a Spinc structure on W will not be determined
by its restriction to W1 and W2.

To address this problem, we must introduce a slightly more complicated
theory: homology with twisted coefficients. The group ĤF (Y, s;Z[H1(Y )])
is the homology of a chain complex defined over the group ring Z[H1(Y )].
If G is a quotient of H1(Y ), we can specialize to get a map

ĤF (Y, s;Z[H1(Y )])→ ĤF (Y, s;Z[G]).

If W : Y1 → Y2 is a cobordism and j : Y2 → W is the inclusion, there is an
induced map

F̂W,s : ĤF (Y1, s)→ ĤF (Y2;Z[G])

where G is any quotient of coker j∗.

Given W1 and W2 as above, we take G = coker i1 ⊕ i2 and form the maps

F̂W1,s1 : ĤF (Y1, s1)→ ĤF (Y2, s1;Z[G])

F̂W2,s2 : ĤF (Y2, s2;Z[G])→ ĤF (Y3, s2)
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where s1|Y2 = s1|Y2 . Then the compositions of the form

F̂W2,s2 ◦ gF̂W1, s2

where g runs over elements of G give the maps F̂W2◦W1,s where s runs over
Spinc structures that restrict to si on Wi.

The final topic we will mention in this section is a very important geometric
property of Floer homology. In its original form it is due to Kronheimer.

Property 7. (Adjunction) Suppose Σ ⊂W is a smoothly embedded surface
with Σ · Σ ≥ 0. If

Σ · Σ + 〈c1(s),Σ〉 ≥ 2g(Σ)− 2,

then FW,s = 0.

Using the conjugation symmetry, it is easy to see this can be improved to
FW,s = 0 if Σ · Σ + |〈c1(s),Σ〉| ≥ 2g(Σ)− 2

1.3 +,− and ∞

We digress to recall the definition of S1 equivariant homology. Suppose X
is a space on which S1 acts. Consider the universal S1 bundle ES1 over the
universal classifying space BS1. In plain English, this is the Hopf bundle
S∞ over CP∞.

Definition 1.9. The S1 equivariant cohomology H∗S1(X) := H∗(X ′), where
X ′ = (X × ES1)/S1, and the quotient is by the diagonal S1 action. The
equivariant homology HS1

∗ (X) = H∗(X
′).

Example 1.10. If you’ve never seen this construction before, it’s helpful
to think about the cases where the S1 action on X is trivial, in which case
X ′ = X ×BS1, so H∗S1(X) = H∗(X)⊗ Z[U ], and where it is free, in which
case X ′ = (X/S1)× ES1 and H∗S1(X) = H∗(X/S1).

There is an obvious projection X ′ → BS1. By pullback, this induces a
map Z[U ] = H∗(BS1)→ H∗S1(X). Using cup and cap products, this makes

H∗S1(X) and HS1

∗ (X) into Z[U ] modules. If we use rational coefficients, the
ring Q[U ] is a PID. It follows that H∗S1(X;Q) decomposes as a direct sum
of free modules Q[U ] and torsion modules Q[U ]/(Uk). The free part of the
this decomposition is particularly easy to describe:
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Theorem 1.11. (Localization) If R = Q[[U−1, U ], then

H∗S1(X,R) = H∗(XS1
)⊗R,

where XS1
is the fixed-point locus of the S1 action.

An important fact about Floer homology is that it formally behaves like
S1 equivariant cohomology. In monopole Floer homology, this is part of the
construction; in Heegaard Floer homology it is somewhat less obvious. More
precisely, for each s ∈ Spinc(Y ), there are Z[U ]–modulesHF+(Y, s), HF−(Y, s),
and HF∞(Y, s), which are “related” to equivariant cohomology by the fol-
lowing dictionary:

ĤF (Y, s)←→ H∗(X)

HF+(Y, s)←→ HS1

∗ (X)

HF∞(Y, s)←→ HS1

∗ (X)⊗R

When Y is a rational homology sphere, Manolescu defined a spectrum
SWF (Y, s) which should play the role of X in the right-hand side of this
dictionary. (Manolescu’s recent resolution of the triangulation conjecture
hinged on the fact that in the case where s is fixed by conjugation, the
conjugation symmetry makes SWF (Y, s) into a space with a Pin(2) action,
and one can consider its Pin(2) equivariant cohomology.

Example 1.12. HF−(S3) = M− := Z[[U ]], HF∞(S3) = R, andHF+(S3) =
M+ := R/M−.

Property 8. There are long exact sequences

∂−→ HF−(Y, s)
i∗−→ HF∞(Y, s)

π∗−→ HF+(Y, s)
∂−→

→ ĤF (Y, s)→ HF+(Y, s)
U−→ HF+(Y, s)→ ĤF (Y, s)→ .

If Y is a rational homology sphere, there’s a spectral sequence starting at
ĤF (Y, s)⊗M+ and converging to HF+(Y, s)

Similarly, if W : Y1 → Y2 is a cobordism, there are induced maps

F ◦W,s : HF ◦(Y1, s|Y1)→ HF ◦(Y2, s|Y2)
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where ◦ ∈ {+,−,∞}. These maps are functorial under composition of
cobordisms and commute in the obvious way with the maps in the exact
sequences above.

The group HF∞(Y, s) (corresponding to the homology of the fixed-point set
of the S1 action) is much easier to understand than the other Floer groups.
In fact, it is determined by purely homological information.

Property 9. If Y is a rational homology sphere, HF∞(Y, s) ' R.
If W : Y1 → Y2 is a cobordism between rational homology spheres, then
F∞W,s : HF∞(Y1, s|Y1) → HF∞(Y2, s|Y2) is an isomorphism if b+2 (W ) = 0
and is 0 otherwise.

In general, HF∞(Y, s) is determined by the triple cup product on H1(Y, s).

Definition 1.13. HF red(Y, s) := ker i∗ ' cokerπ∗ where the maps as in
the first exact sequence of Property 8.

We can now define an interesting invariant of four-manifolds.

Definition 1.14. Suppose M is a closed 4-manifold with b+2 (M) > 1.
Choose a rational homology sphere Y which separates M into M1,M2 each
with b+2 > 0, and view M1 : ∅ → Y and M2 : Y → ∅ as cobordisms. Choose
also a right-inverse φ : HF red(Y ) → HF+(Y ) for ∂. That is, we want
∂ ◦ φ = idHF red(Y ). If s ∈ Spinc(M), the mixed invariant OS(M, s) is

OS(M, s) := F+
M2,s
◦ φ ◦ F−M1,s

(1)

1.4 Gradings

We end this lecture with a brief discussion of gradings in Floer homology.

Property 10. (Relative gradings) If Y is a rational homology sphereHF ◦(Y, s)
is relatively Z graded, and U lowers grading by 2. In general, HF ◦(Y, s) is
relatively Z/A graded, where A = {〈c1(s), x〉 |x ∈ H2(Y )}.

If c1(s) is a torsion class, so HF ◦(Y, s) is relatively Z graded, there is an
absolute Q grading on HF ◦(Y s). This means that

HF ◦(Y, s) =
⊕
t∈Q

HF ◦,t(Y, s).
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We denote this absolute grading by gr. It is compatible with the relative Z
grading, in the sense that if a and b are homogenous elements, then gr a−gr b
is the relative grading difference between a and b. (Note that all elements
of HF ◦(Y, s) have the same grading mod Z.)

Property 11. The absolute grading behaves predictably with respect to
maps induced by cobordisms, in following sense. If W : Y1 → Y2 is a
cobordism, s ∈ Spinc(W ), and a is a homogenous element of HF ◦(Y1, s),
then b := F ◦W,s(a) is homogenous and

gr b− gr a =
c1(s)2 − 2χ(W )− 3σ(W )

4

Example 1.15. HF+(S3) = M+, where grU−k = 2k. HF+(S1 × S2) =
〈1, θ〉 ⊗M−, where gr 1 = −1/2, gr θ = 1/2.

If Y is a rational homology sphere, it follows from Property 9 thatHF+(Y, s) ∼=
M+−⊕T , where T is a torsion module. The Z[U ] submodule M+ is canon-
ically defined by the relation

M+

⋂
k∈Z

UkHF+(Y, s).

Definition 1.16. The d-invariant d(Y, s) is the minimal grading of an ele-
ment of M+.

Invariants of this type were first defined by Froyshov using Seiberg-Witten
theory.

1.5 Exercises

In doing the exercises, you should take as given the properties of Floer
homology stated in the lecture.

1. Let K be the unknot in S3, and let W = W−1(K). Show that the map
F−W,s±1

: HF−(K) → HF−(K) is an isomorphism. What is the map

F−W,s±k
for other values of k?
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2. (The blowup formula) Given a cobordism W : Y1 → Y2, let W ′ =
W ⊕ (−CP2), and let E ∈ H2(W ′) be the exceptional divisor. (That
is, a sphere representing the class of a generator of H2(−CP2).) If
s ∈ Spinc(W ), show that for odd k there is a unique sk ∈ Spinc(W ′)
which agrees with s on W ′ − ν(E), and which has 〈c1(sk), [E]〉 = k.
Use the first problem to show that F ◦W ′,s±1

= ±F ◦W,s. What happens

if instead we take W ′ = W#CP2?

3. If S ⊂ Y is an embedded surface, let

HF ◦(Y, S, k) =
⊕

{s | 〈c1(s),[S]〉=k}

HF ◦(Y, s).

Deduce the adjunction property in the special case where Σ · Σ = 0,
g(Σ) > 0 from the fact that HF ◦(S1 ×Σ,Σ, k) = 0 for k > 2g(Σ)− 2.
(We’ll see how to prove this in the last lecture.)

4. Use the blow-up formula and exercise 3 to prove the adjunction prop-
erty for all Σ with genus > 0. (Hint: blow up repeatedly to produce a
surface Σ′ with self-intersection 0.)

5. Use adjunction to show that if S ⊂ Y is an embedded surface of genus
> 0, then HF ◦(Y, S, k) = 0 whenever k > 2g(S) − 2. Deduce that
there are only finitely many s for which HF ◦(Y, s) 6= 0.

6. Let W1 : S3 → S1 × S2 and W2 : S1 × S2 → S3 be the cobordisms
given by addition of a 1 handle and a cancelling 2-handle respectively.
Use what you know about grading shifts, together with the fact that
W2◦W1 is the identity cobordism, to determine the maps F̂W1 and F̂W2 .
Similarly for the cobordisms W ′2 : S3 → S1×S2 and W3 : S1×S2 → S3

given by addition of a 2-handle and a cancelling 3-handle.

7. Given that c1(s|∂W ) is torsion, explain how to make sense of the quan-
tity c1(s)2appearing in the formula for the degree shift. (Note that a
priori c2

1(s) is a class in H4(W ) = 0 .) Compute the degree shift asso-
ciated to the map F ◦( W, sk), where W = W−p(K). Verify that if sk1
and sk2 restict to the same Spinc structure on ∂W then the difference
in the corresponding degree shifts is an even integer.

8. Identify the S1-equivariant analog of the second exact sequence of
Property 8 . What about the spectral sequence?
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Lecture 2

Left-orderable groups

Definition 2.1. A non-trivial group G is left-orderable if there is a strict,
total order < on the elements of G that is invariant under multiplication on
the left in the sense that

a < b =⇒ ca < cb

for all a, b, c ∈ G.

Notice that the trivial group, having only a single element, quite plainly
satisfies the condition above. However, our convention will be that the trivial
group is not left-orderable. For the moment, perhaps this is best justified by
the assertion that the notion of an order, in any reasonable sense, depends
on having at least two objects to compare. In reality, this convention — one
which is ultimately arbitrary — makes many of the statements of interest
cleaner.

Among the first observations one makes about left-orderable groups is that
they are necessarily infinite. Indeed:

Proposition 2.2. Left-orderable groups are torsion free.

Proof. Let g be any non-trivial element of finite order in a left-orderable
group G and suppose that 1 < g. Then 1 < g < · · · < gn by repeated
self-multiplication on the left, hence 1 < gn = 1 if n is the order of g, which
is impossible. A similar contradiction arises if g < 1.

15
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Of course, the class of non-left-orderable groups is much larger than finite
groups or even torsion free groups. We will see lots of examples, but for the
moment consider the following.

Exercise 2.3. [Calegari-Dunfield [CD03]] Show that the group

G = 〈a, b|bababa−1b2a−1, ababab−1a2b−1〉

is not-left-orderable: For a contradiction, suppose that G is left-orderable
and assume, without loss of generality, that 1 < a. Consider cases 1 < b
(Hint: Compare a and b; the two sub-cases will prove that one of the two
words in the relator is positive) and b < 1 (Hint: Use the relations to find
an expression for 1 as a word in a and b−1).

(Why is G torsion free? One way to see this is to notice that G is the
fundamental group of the Weeks manifold [CD03]; this is now known to be
the closed manifold with the distinction of having the smallest possible hy-
perbolic volume — roughly 0.942707362776 [GMM09]. The Weeks manifold
being hyperbolic, its fundamental group is a torsion-free, discrete subgroup
of PSL2(C), the isometry group of hyperbolic three-space.)

It is quite reasonable to ask if there is any reason to prioritise left-multiplication
over right multiplication. The answer is that there is not as illustrated be-
low.

Exercise 2.4. Show that, given a left-order < on a group G, that

a <̃ b ⇐⇒ a−1 < b−1

for all a, b ∈ G defines a right-invariant, strict total order on the elements
of G. Give the definition of a right-orderable group and prove that every
left-order on G is equivalent to a right-order (and vice versa). In particular,
left- and right-orderable groups are equivalent.

Examples

The following are some natural examples of left-orderable groups.

Example 2.5. The group Z is is left-orderable in the usual sense: We let
a < b whenever b−a is a positive integer. Notice that there are precisely two
such orders on this group (though the other one may not seem so natural!).
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Since Z is abelian, the left-invariance of the order is actually a two-sided
invariance. This order structure, called bi-orderability, is more general; in
this case we are restricting a bi-order to a left-order. Note that not every
left-order is a bi-order — a somewhat famous example, the braid group, is
given below!

More generally, the group Zn is left orderable: Selecting a hyperplane in Rn
containing the origin (and no other points in Zn), together with a choice
of distinguished half-space, a < b if and only if b − a is contained in the
distinguished half-space. Notice that, for n > 1, there are now infinitely
many left-orders obtained in this way.

As suggested by this example, there is an alternative means of specifying a
left-order on a group by providing an exhaustive list of the positive elements
in the left-order. This list is called a positive cone.

Definition 2.6. Given a group G, a positive cone P is a subset of elements
of G satisfying:

(i) P · P ⊆ P;

(ii) G = P t {1} t P−1; and

(iii) P is non-empty.

Condition (i) asserts that if a, b ∈ P then ab ∈ P; in particular, P is a closed
sub-semigroup of G. Condition (ii) asserts that given a ∈ G exactly one of
a ∈ P or a−1 ∈ P or a = 1 holds. Condition (iii) rules out the trivial group
as a left-orderable group, consistent with our convention.

Exercise 2.7. Describe the positive cones implicit in Example 2.5 for any
integer n (the case n = 2 is probably most instructive). What if the hyper-
plane contains some of the non-trivial group elements of Zn?

Exercise 2.8. Prove that the existence of a positive cone for G is equivalent
to a left-order on G. Any positive cone P gives rise to an opposite order:
Take P−1 as positive cone instead. Compare the opposite order with (the
positive cone for) the right-order <̃ of Exercise 2.4

Consistent with the literature, we will use these two definitions interchange-
ably. For instance, a statement like “the word w is a product of positive
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elements and, since w = 1, this is a contradiction” (compare Proposition
2.2 and/or Exercise 2.3) is common when proving that a given group is not-
left-orderable; implicit here is the notion that a list of positive elements is
available, whether by way of a positive cone P or by some other explicit
description of <.

Example 2.9. Braid groups are left-orderable but not bi-orderable. This
is not at all obvious, and is originally due to Dehornoy [Deh94] (that the
left-orders cannot be promoted to bi-orders is proved by Rhemtulla and
Rolfsen [RR02]). There are many other proofs and these are discussed at
length in a book by Dehornoy, Dynikov, Rolfsen and Wiest [DDRW02].
While historically significant, this example is not central to these lectures;
we leave the subject of braid orderability as recommended further reading
for those interest.

Example 2.10. Let Homeo+(R) denote the group of orientation (or, order)
preserving homeomorphisms of R with the usual topology. The group opera-
tion is function composition and the identity is the identity homeomorphism
id(x) = x.

A family of left-orders on Homeo+(R) depends on

• a countable dense subset X ⊂ R (for example, Q ⊂ R); and

• an enumeration, or counting, X = {x0, x1, x2, . . .}.

Then the positive cone

PX = {f ∈ Homeo+(R)|f(xn) > xn and f(xi) = xi for all i < n}

defines a left-order on Homeo+(R).

The only thing that needs a moment of thought is that this PX is a closed
sub-semigroup of Homeo+(R) (the other two conditions are immediate). If
f1, f2 ∈ PX let n1 and n2 be the non-negative integers, required by PX ,
associated with f1 and f2, respectively. If n1 < n2 then f1(f2(x1)) > x1 and
f1 ◦ f2 ∈ PX , and so forth.

Note that the resulting order is extremely sensitive to both of the choices
required in the construction. Indeed, specifying X = {. . . , xi+n, . . . , xi, . . .}
instead of X = {. . . , xi, . . . , xi+n, . . .} should be expected to alter the left-
order rather wildly.
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Exercise 2.11. Write down a definition for < on Homeo+(R) as specified
by PX of Example 2.9.

Properties

We have already seen that left-orderable groups are torsion free, but that the
converse does not hold. This is perhaps the zeroth property of left-orderable
groups. A first property could be:

Proposition 2.12. If H is a non-trivial subgroup of a left-orderable group
G, then H is left-orderable as well.

Proof. This is immediate: Given a positive cone P ⊂ G we obtain a positive
cone P|H ⊂ H by restriction.

Proposition 2.13. Let G→ H be a surjective homomorphism with kernel
K. If H and K are left-orderable groups then G is left-orderable as well.

Proof. Let PK and PH be positive cones onK andH, respectively. Denoting
the surjection by f : G→ H, consider the subset PK ∪ f−1(PH) ⊂ G. This
is a positive cone (check this!), and hence G is left orderable.

Theorem 2.14 (Vinogradov [Vin49]). Let G1 and G2 be non-trivial groups.
The free product G1 ∗G2 is left-orderable if and only if G1 and G2 are both
left-orderable groups.

To summarise, left-orderable groups as torsion free and closed (non-trivial)
under subgroups, extensions and free-products.

Somewhat more subtle are quotients of left-orderable groups. Let G be a
left-orderable group and suppose that K ⊂ G is a normal subgroup. Of
course, K is left-orderable; considering the short exact sequence

1 K G H 1

we’d like to know when H is a left-orderable group. This turns out to require
an additional condition on K.
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Definition 2.15. Let G be a group with left-order <. A non-trivial proper
subgroup C ⊂ G is called convex if, given a, b ∈ C with a < b then any
c ∈ G for which a < c < b guarantees that c ∈ C.

Proposition 2.16. Consider a short exact sequence of groups

1 K G H 1

where G is a left-orderable group. Then H is left-orderable if and only if K
is a convex subgroup (relative to some left-order on G).

Proof. First suppose that K is a convex subgroup of G relative to some
left-order < (with associated positive cone P) which we will fix. We’ll prove
that the set (GrK) ∩ P gives rise to a positive cone Q for H = G/K: Let
aK ∈ Q if and only if a ∈ P.

To see that this is well-defined, consider a ∈ (GrK)∩P and cosets aK = bK
so that b = ac for some c ∈ K. Notice that if c < a−1 < 1, convexity of K
would show that a−1 ∈ K contradicting the fact that a /∈ K. It must be
that a−1 < c and hence 1 = aa−1 < ac = b so bC ∈ Q.

To see thatQ ⊂ G/K is a closed sub-semigroup, consider aK, bK ∈ Q. Then
a, b ∈ P hence ab ∈ P also, thus (ab)K ∈ Q provided ab /∈ K. However,
were it the case that K = (ab)K then bK = (aK)−1 = a−1K implying that
b is negative, a contradiction.

To see that G/K = Q t {1} t Q−1, note that K represents the identity in
G/K and any coset C (other than K) either contains a positive element or
else C−1 does.

Finally, to see that Q is non-empty, consult the definition of a convex sub-
group, in particular, K is a proper subgroup of G so there must be a coset
C different from K.

Conversely, suppose that H is a left-orderable quotient of a left-orderable
group G. Let φ denote the projection homomorphism, and let P, PH , and
P|K be positive cones for G, H, and K respectively.

Consider the following positive cone PG ⊂ G: An element a ∈ PG if and
only if φ(a) 6= 1 and φ(a) ∈ PH or φ(a) = 1 and a ∈ P|K . We claim that K
is now a convex subgroup of G, relative to this (possibly) new left-order on
G.
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Indeed, consider a < c < b where a, b ∈ K and c ∈ G. Then c−1a <
1 < c−1b (using the positive cone PG), and if c /∈ K then neither c−1a nor
c−1b is an element of K either. Hence c−1b ∈ P so φ(c−1b) = φ(c−1) =
φ(c)−1 is positive while c−1a ∈ P−1 hence φ(c−1a) = φ(c−1) = φ(c)−1 is
(simultaneously) negative. This is a contradiction, hence c ∈ K and K is
convex in G.

Characterisations

Theorem 2.17 (Conrad). A group G is left-orderable if and only if, given
a finite subset {a1, . . . , an} ⊂ G r {1}, there exist signs εi = ±1 such that
the semigroup generated by {aε11 , . . . , aεnn } does not contain the identity.

This might be thought of as measuring the failure to obtain a contradiction
when seeking to establish that a group is not left-orderable (as in Exercise
2.3, for example). The utility of this characterization is made clear in the
proof of the following.

Theorem 2.18 (The Burns-Hale Criterion [BH72]). A group G is left-
orderable if and only if every non-trivial finitely generated subgroup of G
surjects onto a left-orderable group.

Proof. The proof is by contradiction: Suppose every non-trivial finitely
generated subgroup of G surjects onto a left-orderable group, but that
G is not left-orderable. Then by Conrad’s theorem, we can find elements
a1, . . . , an ∈ G r {1} such that, for all possible sigh choices εi = ±1, the
subsemigroup generated by {aε11 , . . . , aεnn } contains the identity.

Choose the smallest possible integer n for which this holds, and consider the
subgroup H ⊂ G with finite generating set {a1, . . . , an}. While H is not
left-orderable (applying Conrad’s theorem), H surjects onto a left-orderable
group H/K by assumption; the kernel of the surjection K cannot contain
all of the ai since H/K is non-trivial. On the other hand, K contains some
ai since H/K is left-orderable but H is not.

Let a1, . . . , ar /∈ K and ar+1, . . . , an ∈ K for 0 < r < n. Choose signs
εi = ±1 so that the subsemigroup generated by {aε11 , . . . , aεnr }, denoted
(aε11 , . . . , a

εn
r ), does not contain the identity; since r < n this is possible

by the minimality of n. As a result (aε11 , . . . , a
εn
r ) ∩ K = ∅. Again by
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minimality of n, 1 /∈ (a
εr+1

r+1 , . . . , a
εn
n ) for some choices of signs. However

1 ∈ (aε11 , . . . , a
εn
n ), meaning we can express the identity as a word in the set

{aε11 , . . . , aεnn }. This word must contain at least one occurrence of an aεii for
i ≤ r. This contradicts the fact that (aε11 , . . . , a

εn
r ) ∩K = ∅.

This is a fine characterisation, but it is clearly not particularly practical for
establishing left-orderability for a given group. Burns and Hale referred to
their (necessary and sufficient) condition for left-orderability order indicabil-
ity, which is sensible once you recall that a locally indicable group G satisfies
the property that every non-trivial, finitely generated subgroup surjects onto
Z. As a result, the Burns-Hale theorem proves that locally indicable groups
are left-orderable; the Burns-Hale criterion weakens the requirement from Z
(our first example of a left-orderable group) to any left-orderable group.

Example 2.19. This gives rise to a large family of left-orderable groups:
Let K be a knot in S3 and let M = S3 r ν(K) denote the knot exterior.
Then the knot group π1(K) = π1(M) is a locally indicable group by a result
of Howie and Short [HS85]; it follows that all knot groups are left-orderable.

Theorem 2.20 (see Linnell [Lin99] or Boyer-Rolfsen-Wiest [BRW05]). If G
is a countable group, then G is left-orderable if and only if G is a subgroup
of Homeo+(R).

Proof. First consider the countable subgroup Q ⊂ R, and set X = Q × G;
X may be ordered lexicographically by setting (p, a) < (q, b) if and only if
a < b (in G) or a = b and p < q (in Q). Notice that by viewing p ∈ Q as an
equivalence class of pairs (np,mp), Q may be ordered in precisely the same
way. In fact, if p =

np

mp
then this recovers the standard order on Q inherited

(by restriction) from R. We leave as an exercise the following claim: X and
Q are isomorphic as (countable) ordered sets. Denote this order preserving
bijection by φ : X → Q.

Now G acts on X by setting a(p, b) = (p, ab); we obtain an action of G on
Q by ap = φ(a(φ−1(p))). So to every a ∈ G we may assign the function
fa ∈ Homeo+(Q) associated with multiplication on the left by a.

Now, by continuity, the inclusion of Q into R gives rise to an extension of
fa ∈ Homeo+(Q) to fa ∈ Homeo+(R). Hence G is realised as a subgroup of
Homeo+(R), as claimed.
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This has the pleasing consequence that countable left-orderable groups are
familiar objects: What could be simpler than a continuous monotone func-
tion f : R → R? However, as we have seen in Example 2.9, the set of
left-orders on Homeo+(R) seems to be rather complicated.

Finally, we advertise a great result of Farrell which, to the best of our knowl-
edge, has yet to be applied to a topological problem.

Theorem 2.21 (Farrell [Far76]). Suppose that X is a locally-compact, para-
compact topological space (for example, let X be a manifold), and let X̃ be
the universal covering of X. Then π1(X) is left-orderable if and only if there
is a embedding of topological spaces X̃ → X×R and a commutative diagram

X̃ X × R

X

where X × R→ X is projection to the first factor.

Three-manifold groups

Farrell’s result hints that there may be more to left-orderability when re-
stricting to a topological setting. We will be interested in three-manifold
groups, that is, groups arising as the fundamental group of a three-manifold.
Note that these are always countable groups, so by Theorem 2.20 left-
orderable three-manifold groups are subgroups of Homeo+(R). Continuing
with previous lectures, all three-manifolds will be assumed to be connected
orientable and, unless noted otherwise explicitly, compact. (Hatcher’s notes
are a good reference [Hat].)

This hint is born out by a result of Boyer, Rolfsen and Wiest:

Theorem 2.22 (Boyer-Rolfsen-Wiest [BRW05]). Let M be an compact,
connected, orientable, irreducible three-manifold. Then π1(M) is left-orderable
if and only if π1(M) surjects onto a left-orderable group.

Proof. One direction is immediate: If π1(M) is left-orderable then πi(M)
surjects onto a left-orderable group, namely, itself.
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Suppose then that π1(M) surjects onto a left-orderable group G. By the
criterion of Burns and Hale it is enough to show that every non-trivial
finitely generated subgroup of π1(M) surjects onto a left-orderable group.
Let H be such a subgroup; H is either finite or infinite index in π1(M). Then
if H has finite index in π1(M) it’s image in G has finite index also. This
image being non-trivial, it suffices to restrict π1(M)→ G to H ⊂ π1(M) to
obtain the desired surjection from H to a left-orderable group.

So it remains to consider the case where H is an infinite index, finitely gen-
erated, subgroup of π1(M). Let p : M̃ → M be the corresponding covering

space so that p∗(π1(M̃)) = H. Note that M̃ is a non-compact manifold.
At this stage we appeal to a major piece of machinery from three-manifold
topology, namely, the Compact Core Theorem due to Scott [Sco73]: There

exists a compact submanifold i : M c ↪→ M̃ with the property that the in-
duced homomorphism i∗ sends π1(M c) isomorphically to π1(M̃). Since M c

is compact, it must have non-empty boundary (otherwise M c and M̃ would
coincide).

Consider the case where some component of the boundary ∂M c is a two-
sphere S ⊂ ∂M c. Since M is irreducible, so is M̃ (this is not an obvious

statement, see [Hat, Theorem 3.15]); hence S bounds a three-ball B ⊂ M̃ .

Suppose that M c ⊂ B ⊂ M̃ . It follows that i factors through B and
π1(M c) is not isomorphic to π1(M̃). This is a contradiction, so it must be
that B ∩M c = S ⊂ ∂M c and we may attach B to M c along S without
compromising the isomorphism between π1(M c) and π1(M̃). Without loss
of generality then, we may assume that ∂M c has no two-sphere components.

We now claim that M c, a compact orientable manifold with non-empty
boundary containing no two-sphere components, has positive first betti num-
ber. Since each boundary component has negative Euler characteristic we
have

0 ≥ 1
2χ(∂M c) = χ(M c) = 1− b1(M c) + b2(M c),

where the last equality uses the fact that H3(M c) = 0 while the first equality
appeals to the double ofD(M c) ofM c which, as a closed manifold, must have
0 = χ(D(M c)) = 2χ(M c) − χ(∂M c). As such we conclude that b1(M c) ≥
1 + b2(M c) ≥ 1.

Thus H1(M c;Z) admits a surjection to Z by restriction to a free summad,
so the composition π1(M c) → H1(M c;Z) → Z yields a surjection H → Z,
as required.
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This result immediately gives rise to two very large families of left-orderable
three-manifold groups:

Corollary 2.23. If M is a compact, irreducible, orientable manifold with
non-empty (non-spherical) boundary, then π1(M) is left-orderable. In par-
ticular, if M is the exterior of a knot in the three-sphere, then π1(M) is
left-orderable, recovering Howie and Short’s result.

Corollary 2.24. If Y is an closed, irreducible, orientable manifold with
H1(Y ;Q) 6= 0 (i.e. Y has positive first betti number) then π1(Y ) is left-
orderable.

From this last observation, it follows immediately that the class of rational
homology spheres is of particular interest.

Further reading

The material surveyed above is decidedly idiosyncratic and far from being a
complete account of left-orderable groups in low-dimensional topology. As
such it is farther still from being a complete account of left-orderable group
theory, a subject of study in its own right. Left-orderable groups show up
in interesting and surprising places: For example, they make an appearance
in Mineyev’s recent resolution of the Hanna Neuman Conjecture [Min12].

The notion of endowing a group with a left-order, viewed as an auxiliary
structure on a group, seems natural enough as a weakening of the notion
of local indicability (as discussed in relation to the Burns-Hale criterion).
A nice reference for orderability in this context is the book by Mura and
Rhemtulla [BMR77]. More recently, an observation of Sikora [Sik04] has
added another topological flavour to left-orderable groups by considering
the set of all left-orders on a given group as a topological space.

ExerciseF 2.25. Fix a left orderable group G and denote by LO(G) the set
of all left orders on G. This becomes a topological space with the subbasis
U ba = {<: a < b}. To study this topology further, consider a positive cone
P ∈ LO(G) (compare Exercise 2.8) and prove that there is an inclusion of
sets LO(G) into 2G = {S : S ⊆ G}, the power set of G (considered as a set).
A subbasis for a topology on 2G is given by sets

Ua = {S ⊂ G : a ∈ S} and U ′a = {S ⊂ G : a /∈ S}.
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You can prove that the induced relative topology on LO(G) is equivalent to
the topology on LO(G) described in terms of the subasis {U ba}. Using the
fact that 2G is a compact topological space (a consequence of Tychonoff’s
theorem), prove that LO(G) is a compact topological space. Finally, prove
that LO(G) is a totally disconnected topological, that is, that the only
connected components are singletons.

As such, the distinction between orders (on a given group) that are isolated
versus non-isolated is an interesting one that has received attention. For
example, the Dehornoy ordering of the braid groups is known to be non-
isolated [Nav10]. And, in the case where LO(G) contains no isolated points,
it is necessarily homeomorphic to a Cantor set. However, the braid groups
admit left-orders that correspond to isolated points in LO(Bn) [Cla10].

The fact that the braid groups are left-orderable was originally proved using
techniques from logic [Deh94]. As a result, this property was not immedi-
ately accessible to topologists. However, interested in the problem of zero
divisors in a group ring — it turns out that if G is left-orderable then ZG
has no zero divisors; see Passman [Pas77] — Rolfsen was put onto the work
of Dehornoy by Birman; he later encouraged the low-dimensional topology
community to understand the result. New proofs followed, and this was
something of a watershed moment for low-dimensional topology and left-
orderable groups. For example, it was subsequently shown that many more
mapping class groups — braids being mapping classes of an n-punctured
disk — are left-orderable as well. This culminates with, and is collected
in, the work Why are braids orderable? by Dehornoy, Dynikov, Rolfsen and
Wiest [DDRW02].

The first comprehensive discussion of left-orderable groups in the context of
three-manifold topology is the work of Boyer, Rolfsen and Wiest [BRW05]
however important work concurrent with this is that of Calegari and Dun-
field [CD03] and Roberts, Shareshian and Stein [RSS03]. These latter to
works are principally concerned with foliations, and we will have more to
say on this in a future lecture. While it seems unreasonable to reproduce the
entire work of Boyer, Rolfsen and Wiest here, it should be noted that this
paper is an essential reference in the subject and should be read by anyone
seriously considering delving deeper into left-orderability in the context of
three-manifold groups. Note that Boyer, Rolfsen and Wiest do not restrict
to orientable three-manifolds as we have done here.



Lecture 3

The basic structure of
Heegaard Floer homology

In this lecture we’ll sketch the construction of an invariant satisfying the
properties stated in the first lecture — Heegaard Floer homology. Heegaard
Floer is a bit like simplicial homology, in the sense that in order to define it,
we first choose a specific combinatorial model of our space (in this case, a
handle decomposition), and then show that the homology does not depend
on which model we choose.

3.1 Heegaard diagrams

Definition 3.1. Let Σ be a closed oriented surface. A set of attaching
circles on Σ is a set of disjoint simple closed curves on Σ.

Given two sets of attaching circles α = {α1, . . . , αj} and β = {β1, . . . , βk}
on Σ, we can form an oriented 3-manifold Yαβ by starting with Σ× I (with
its standard orientation) and attaching two handles along the circles αi × 0
and βi×1. If any components of the boundary of the resulting manifold are
spheres, we fill them in with D3. The resulting manifold is Yαβ.

Definition 3.2. A generalized Heegaard diagram for Yαβ is a quadruple
(Σ, α, β, Z) where Z = {z1, . . . zl} is a set of points in Σ − α − β. The

27
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diagram is balanced if the number of circles in α and β are the same and
each component of Σ− α and Σ− β contains exactly one zi.

If |α| = |β| = g(Σ), the generalized Heegaard diagram is a Heegaard diagram
in the usual sense. In this case, being balanced means there is exactly one
basepoint.

Elementary Morse theory shows that any compact orientable 3-manifold
can be represented by a generalized Heegaard diagram, and that any closed
3-manifold can be represented by a Heegaard diagram.

Example 3.3. Some Heegaard diagrams of S3. Standard diagram of L(p, q).
Complement of the trefoil.

3.2 Lagrangian Floer homology

Given a 3-manifold Y , choose a Heegaard diagram (Σ, α, β, z) representing

Y . We’ll define a chain complex ĈF (Σ, α, β, z) whose homology is ĤF (Y ).
In brief, this complex is the Lagrangian Floer chain complex CF (Tα,Tβ)
associated to a pair of Lagrangians in Symg(Σ − z). (In the case when
b1(Y ) > 0, we’ll have to impose another condition, called admissability on
our Heegaard diagram.)

In order to make sense of this description, we give a brief sketch of La-
grangian Floer homology. (Please be aware that in doing so I’ve collapsed
several illustrious careers worth of work in analysis into a few sentences.)
Let (M,ω) be a symplectic manifold, and choose a compatible almost com-
plex structure J : TM → TM . By definition, this means that the two-form
g(v, w) := ω(v, Jw) defines a Riemannian metric on M .

Suppose that L+, L− are two transversely intersecting Lagrangians M (i.e.
ω|L± = 0), and fix two points x,y ∈ L+ ∩ L−.

Definition 3.4. A compatible map ϕ : D2 → M is a continuous map for
which ϕ(−i) = x, ϕ(i) = y, and ϕ(∂D2

±) ⊂ L±, where

∂D2
+ = {(x, y) ∈ S1 |x ≥ 0}

and similarly for ∂D2
−. We let π2(x,y) be the set of homotopy classes of

compatible maps.
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If φ ∈ π2(x,y) and ψ ∈ π2(y, z), there is a natural class φ#ψ ∈ π2(x, z), as
well as a class −φ ∈ π2(y,x). Thus there is an equivalence relation ∼ on
L1 ∩ L2 defined by x ∼ y if π2(x,y) 6= ∅.

A compatible map ϕ is J-holomorphic if it intertwines the standard complex
structure on the disk with the almost-complex structure J . In other words,
dϕ(iv) = J(dϕ(v)) for all v ∈ TzD2, z ∈ int D2.

Definition 3.5. Given φ ∈ π2(x,y), let M(φ) be the set of all compatible
J-holomorphic maps ϕ : D2 →M which are in the homotopy class ϕ.

Theorem 3.6. For a generic choice of J , the set M(φ) is a manifold. Its
dimension µ(φ) is called the Maslov index of φ.

The mod 2 Maslov index is determined by topological data: if x and y
have the same intersection sign, µ(φ) is even, and otherwise it is odd. The
index is additive in the following sense. If φ ∈ π2(x,y) and ψ ∈ π2(y, z),
there is a natural class φ#ψ ∈ π2(x, z) and µ(φ#ψ) = µ(φ) + µ(ψ).

There is a 1-parameter group of holomorphic maps gt : D2 → D2 which fix
±i. We can use this family to define an action of R onM(φ) via t·ϕ = ϕ◦gt.
This action is free unless x = y and ϕ is the constant map. We denote the
quotient M(φ)/R by M(φ).

After fixing some additional choices (which we’ll leave unspecified), we get
an orientation onM(φ). When µ(φ) = 1, the quotientM(φ) is an oriented,
0-dimensional manifold, so it consists of a set set of signed points. We let
#M(φ) be the signed number of points in M(φ).

Definition 3.7. The Lagrangian Floer chain complex CF (L+, L−) is the
chain complex generated over Z by L+ ∩ L−, and with differential given by

dx =
∑

y∈L+∩L−

∑
φ∈π2(x,y)
µ(φ)=1

#M(φ)y

It is immediate from the definition that CF (L+, L−) decomposes as a direct
sum

CF (L+, L−) =
⊕
s

CF (L+, L−, s) (3.1)

where s runs over the set of equivalence classes of generators, and CF (L+, L−, s)
is generated by those x ∈ s.
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To ensure that the sum is finite and we have d2 = 0, we must impose
additional conditions on M and L±. (The relevant conditions for Heegaard
Floer homology will be discussed below.) The proof that d2 = 0 proceeds
by studying the ends of moduli spaces with µ(φ) = 2. Specifically, the
coefficient of z in d2x is∑

φ∈π2(x,y)
µ(φ)=1

∑
ψ∈π2(y,z)
µ(ψ)=1

#M(φ)#M(ψ) =
∑

χ∈π2(x,z)
µ(χ)=2

∑
φ#ψ=χ

#M(φ)#M(ψ)

The inner sum on the RHS is the same as the signed number of ends in the
noncompact 1-dimensional moduli space M(χ).

Gradings: Suppose that for all x,y ∈ L+∩L− π2(x,y) contains a unique el-
ement φxy. Then the Maslov index defines a relative Z grading on CF (L+, L−)
by grx− gr y = µ(φxy). This is well defined, since

(gr x− gr y) + (gr y − gr z) = µ(φxy) + µ(φyz)

= µ(φxy#φyz) = µ(φxz) = gr x− gr z.

In general, the best we can expect to get is a Z/a grading, where

a = gcd{µ(φ) |π ∈ π2(x,x).

3.3 Definition of ĤF

We now return to the definition of ĤF . Let (Σ, α, β, z) be a Heegaard di-
agram of Y , and let g be the genus of Σ. The symplectic manifold we will
use to define ĈF (Σ, α, β, z) is Symg(Σ− z).

The symmetric product SymgΣ := Σg/Sg, where the symmetric group Sg
acts by permuting the factors. A point of Symg(Σ − z) is an unordered g-
tuple of points of Σ. Symg(Σ−z) is an open subset of SymgΣ; its complement
is the divisor in SymgΣ consisting of unordered g-tuples of points, at least
one of which is z.

To define the Lagrangian Tα, note that α1× . . .×αg is an embedded torus in
Σg. Since all the αi’s are disjoint, the projection maps this torus injectively
to Symg(Σ). Its image is Tα. (It’s not completely obvious how to choose
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the symplectic structure on Symg(Σ − z) so that Tα is Lagrangian; see
Perutz/Lekili for an explanation.)

The dimension of Symg(Σ) can be quite high, but it is possible to describe

the generators of ĈF (Σ, α, β, z) and compatible disks between them quite
explicitly in terms of Σ. We explain how to do this now.

Generators: The complex ĈF (Σ, α, β, z) is generated by the points of
Tα∩Tβ. An intersection point of this form is an unordered g-tuple of points
{x1, . . . , xk}, where each xi ∈ αj ∩ βk for some j, k, and each αj and βk
contain precisely one xi.

Compatible Maps: Given x,y ∈ Tα ∩ Tβ and φ ∈ π2(x,y), choose a
representative ϕ : D2 → Symg(Σ) of φ, and let

Sϕ := {(z, w) ∈ D2 × Σ |w ∈ ϕ(z)}.

There are obvious projections π : Sϕ → D2 and p : Sϕ → Σ. For most ϕ
(those which are transverse to the big diagonal in SymgΣ)), the map π is a
degree g branched covering map. The map π takes ∂S to α ∪ β.

Conversely, given a surface S and maps π : S → D2 and p : S → Σ
satisfying the above conditions, there is a map ϕS : D2 → SymgΣ given by
ϕ(z) = p(π−1(z)), where π−1(z) is to be interpreted as a multiset.

Definition 3.8. Let [Sϕ] be the generator ofH2(Sϕ, ∂Sϕ). The class p∗([Sϕ]) ∈
H2(Σ, α ∪ β) depends only on the homotopy class φ of ϕ. It is called the
domain of φ and denoted by D(φ). Usually we represent D(φ) by writing
numbers (multiplicities) in the components of Σ− (α ∪ β).

Let xα,j be the point of x which lies on αj . Suppose we are given a domain
D whose boundary ∂D ∈ H1(α ∪ β) can be represented by a chain of the
form

∑
[γαj ]−

∑
[γβj ], where γαj is a path on αj from xα,j to yαj , and γβj is

a similar path on β. (Let’s call this condition ∗.) Then we can construct an
appropriate S, π and p as above. We have thus established a correspondence
between elements of π2(x,y) and domains which satisfy condition ∗.

To compute ĤF , we should use only compatible holomorphic disks whose
images are contained in Symg(Σ−z). This condition is also easy to describe.
If we use a J sufficiently near to an honest complex structure on SymgΣ, then
any intersections of the holomorphic disk ϕ(D2) with the divisor which is the
complement of Symg(Σ− z) will be positive. There will be no intersections
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if and only if the algebraic intersection number of the disk with the divisor
is 0. It is easy to see that this intersection number is just the multiplicity
of the domain D(φ) in the region containing z, which we denote by nz(φ).

3.4 Spinc structures

We now investigate how the set of generators Tα ∩Tβ partitions into equiv-
alence classes under the relation ∼. Given generators x,y, we try to find a
domain D relating them. To do so, we first pick any paths γα,j from xα,j to
yαj and γβ,j from xβ,j to yβj . We can find a domain D with

∂D =
∑

[γαj ]−
∑

[γβj ]

if and only if the homology class on the right-hand side is 0 in H2(Σ). If this
is not the case, we may modify our original choice of γα,j by adding copies
of αj , and similarly for γβ,j . The net result is that the obstruction to x and
y being related by a domain is

ε(x,y) =
∑

[γαj ]−
∑

[γβj ] ∈
H1(Σ)

〈α, β〉
= H1(Y ).

It is not hard to see (exercise) that ε(x,y) + ε(y, z) = ε(x, z), and thus
that the set of equivalence classes may be identified with a subset of an
affine copy of H1(Y ) ' H2(Y ). It’s tempting (but incorrect) to identify
equivalence classes with Spinc structures on Y . The correct assertion is that
a generator x and a basepoint z together determine a Spinc structure sz(x).
If x ∼ y, then sz(x) = sz(y), and more generally sz(x) − sz(y) = ε(x,y).
The decomposition (3.1) thus gives the desired decomposition

ĈF (Y ) =
⊕

ĈF (Y, s)

.

3.5 Manifolds with b1 > 0

Next we describe the structure of π2(x,y). The # operation makes π2(x,x)
into an abelian group, which acts freely and transitively (again by #) on
π2(x,y). Thus it suffices to determine the structure of the group π2(x,x).
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Lemma 3.9. π2(x,x) ' Z⊕H2(Y ).

Proof. There is a surjective homomorphism ρ : π1(x,x) → Z given by φ 7→
nz(φ). An class φ ∈ ker ρ is determined by ∂φ, which is a linear combination
of α’s and β’s. Such a linear combination is the boundary of a domain if
and only if it is null-homologous in Σ, so kerφ = ker ι ' H2(Y ), where
ι : H1(α)⊕H1(β)→ H1(Σ).

If φ ∈ ker ρ, its domain D(φ) is called a periodic domain. In order to define

ĤF (Y ) for manifolds with b1 > 0, we must use an admissible Heegaard
diagram; that is one in which every periodic domain has both positive and
negative coefficients.

Example 3.10. The standard Heegaard diagram for S1×S2 has no gener-
ators and is not admissible. An admissible diagram has two generators a, b
and da = b− b = 0, db = 0.

To define homology with twisted coefficients, we fix one generator x, and for
each other generator y ∼ x, we choose a class φy ∈ π2(x,y) with nz(φy).
Then we can identify π2(y, z) with π2(x,x) via ψ 7→ φy + ψ − φz. Given
ψ ∈ π2(y, z) with nz(φ) = 0, we get a class t(ψ) ∈ H2(Y ) which is the image
of φy + ψ − φz in H2(Y ).

Definition 3.11. The chain complex ĈF (Y ;Z[H1(Y )]) is generated by x ∈
Tα ∩ Tβ. The differential is given by

dx =
∑
y

∑
φ∈π2(x,y)
µ(φ)=1
nz(φ)=0

#M(φ)[t(φ)]y.

Example 3.12. The standard Heegaard diagram for Y = S1 × S2 gives a
complex ĈF (Y,Z[H1(Y )] = ĈF (Y,Z[T±1]) with da = (T − 1)b which is the
standard complex for the twisted homology of S1.

3.6 +,−, and ∞

To define the equivariant Floer groups, we use all domains in π2(x,y) (not
just those with nz(φ) = 0 and take twisted cohomology with respect to the
map ρ : π2(x,x)→ Z.
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Definition 3.13. CF∞(Σ, α, β, z) is the complex over Z[U±1] generated by
Tα ∩ Tβ and with differential

dx =
∑
y

∑
φ∈π2(x,y)
µ(φ)=1

#M(φ)Unz(φ)y.

Since the Maslov index of the domain DΣ is 2 (exercise), U has homological
grading 2.

The fact that nz(φ) ≥ 0 wheneverM(φ) 6= ∅ implies that the Z[U ] submod-
ule of CF∞(Y ) generated by x ∈ Tα ∩ Tβ is a subcomplex.

Definition 3.14. CF−(Σ, α, β, z) is the complex over Z[U ] generated by
Tα ∩ Tβ and with differential

dx =
∑
y

∑
φ∈π2(x,y)
µ(φ)=1

#M(φ)Unz(φ)y.

It is a subcomplex (over Z) of CF∞(Σ, α, β, z), and we define

CF+(Σ, α, β, z) :=
CF∞(Σ, α, β, z)

CF−(Σ, α, β, z)

Remark 3.15. If Y is a rational homology sphere, fix x ∈ Tα ∩ Tβ and
let φy be a class in π2(x,y). The map y 7→ Unw(φy)−nz(φy) defines an
isomorphism between CF∞(Y, α, β, z) and CF∞(Y, α, β, w). It follows that
HF∞(Y, s1) ' HF∞(Y, s2) for all s1, s2 ∈ Spinc(Y ). This should make the
first part of Property 9 from the first lecture at least plausible.

Generalized Heegaard Diagrams: We can also compute HF−(Y ) start-
ing from a balanced generalized Heegaard diagram (Σ, α, β, Z). To do so,
we work over the ring RZ := Z[U1, . . . , Uk], where Z = {z1, . . . , zk}. We let

UnZ(φ) :=
k∏
i=1

U
nzi
i (φ)

and define CF−(Σ, α, β, Z) to be the complex over RZ generated by Tα∩Tβ
with differential

dx =
∑
y

∑
φ∈π2(x,y)
µ(φ)=1

#M(φ)UnZ(φ)y.
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Ozsváth and Szabó showed that if the generalized Heegaard diagram is ad-
missible, the homology of this complex is HF−(Y ), and that each Ui acts
as U .

We can also consider the hat version of this construction, in which we only
count domains with nzi(φ) = 0 for all i. The homology of the resulting

complex is ĤF (Y )⊗H∗(T k−1).

3.7 More about µ

We can compute the Maslov index µ(φ) directly from the domain of φ.

Definition 3.16. If S is a component of Σ − α − β, we define the Euler
measure me(S) := χ(S) + n/4, where n is the number of corners of S. If D
is a domain in Σ, we define

me(D) :=
∑
S

nS(D)me(S)

where the sum runs over all components of Σ− α− β.

For x ∈ α ∩ β, let

nx(φ) := (1/4)
4∑
i=1

nSi(φ),

where the sum runs over the 4 components of Σ − α − β adjacent to x. If
x = {x1 . . . xk} ∈ Tα ∩ Tβ, we define nx(φ) =

∑k
i=1 nxi(φ).

Theorem 3.17. (Lipshitz’s formula) µ(φ) = me(D(φ)) + nx(φ) + ny(φ).

A theorem of Lipshitz and Lee says that if Y is a rational homology sphere,
we can use this formula to compute the difference in absolute gradings for
generators in different Spinc structures. Suppose that ε(x,y) has order p
in H1(Y ). Then we can find a domain D in Σ− z whose boundary has the
form

∂D =

p∑
i=1

g∑
j=1

γαj ,i −
p∑
i=1

g∑
j=1

γβj ,i

where each γαj ,i is a path from xα,j to yα,j along αj , and similarly for the
γβj ,i’s.

Theorem 3.18. (Lipshitz -Lee) gr x− gr y = µ(D)/p.



36LECTURE 3. THE BASIC STRUCTUREOF HEEGAARD FLOER HOMOLOGY

3.8 More about M

The first question most people ask when they see the definition of ĤF is
“How can I compute M(φ)?” In general, there is no easy answer. However
there are a few things that it is good to keep in mind. (Here we assume we
are using a an almost complex structure J induced from a complex structure
on Σ.)

• If the multiplicity of any region in D(φ) is negative, M(φ) is empty.

• If D(φ) can be split into two disjoint components D1 and D2 and
µ(φ) = 1, thenM(φ) =M(D1)×M(D2). Since µ(φ) = µ(D1)+µ(D2),
wlog µ(D1) ≤ 0. Then either the map associated to D1 is the constant
map, in which case D1 is a trivial domain consisting of isolated points
and M(φ) =M(D2), or M(D1) = ∅, so M(φ) = ∅.

• There are some domains for which it can be shown that #M(φ) = ±1
for any choice of complex structure on Σ. In contrast, there are other
domains for which M(φ) varies with the complex structure.

• A region of a Heegaard diagram is said to be nice if every component
of Σ−α−β has nonnegative Euler measure (i.e. is a bigon, a rectangle,
or an annulus.) A beautiful theorem of Sarkar shows that if µ(φ) = 1,
D(φ) is nice and M(φ) is nonempty, then D(φ) is either a bigon or a
rectangle. This observation is the starting point for most combinatorial
methods of computing Heegaard Floer homology.

3.9 Exercises

1. Show that SymnC = Cn (Hint: consider the correspondence which
assigns to a monic polynomial of degree n its roots.) Deduce that
SymnΣ is a complex manifold. Show that SymnCP1 = CPn.

2. Show that D(φ#ψ) = D(φ) +D(ψ).

3. Show that ε(x,y) + ε(y, z) = ε(x, z).

4. Let φΣ ∈ π2(x,x) correspond to the domain DΣ which has multiplicity
1 everywhere in Σ. Show that µ(φΣ) = 2.
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5. Let J be a complex structure on SymgΣ induced by a complex struc-
ture on Σ. Use the Riemann mapping theorem to show that if D(φ)
is a bigon, then #M(φ) = ±1.

6. Suppose D(φ) is a convex rectangle. If ϕ is a holomorphic representa-
tive of φ, describe Sφ, p and π. Show that #M(φ) = ±1.

7. Using the Heegaard diagram of S3 − ν(T ) drawn in lecture, draw a
Heegaard diagram for T0 (0-surgery on the trefoil). List the generators
and partition them into equivalence classes. What happens if we do a
different surgery on T?

8. Show that ĤF satisfies the Property 1 from the first lecture. (Hint: for
the connected sum, put the basepoint in the connected sum region.)

9. Construct the exact sequences and spectral sequences of Property 8
from the first lecture.

10. Use Lipshitz and Lee’s theorem to compute the differences in absolute
grading for the generators of ĤF (L(5, 1)). Do the same thing for
L(5, 2).

3.10 Exercises for Lectures 3 and 4

1. Suppose (M,γ) is a sutured manifold andD ↪→M is a properly embed-
ded disk with |∂D ∩ γ| = 2. Show that the sutured manifold (M ′, γ′)
obtained by decomposing (M,γ) along D does not depend on which
orientation we give D. (The manifold (M ′, γ′) is said to be obtained
from (M,γ) by a disk decomposition.) Use the decomposition formula
to show that SFH(M ′, γ′) ' SFH(M,γ).

2. Prove the result of the first exercise directly from the definition of
SFH.

3. A sutured manifold (M,γ) is disk-decomposable if it can be reduced to
the trivial sutured manifold (B3, γ0) be repeated disk decompositions.
Show (without appealing to Floer homology) that if (M,γ) is disk
decomposable, it is a product manifold. Find a disk decomposition for
the complement of the trefoil knot, and deduce that it is fibred. Do
the same for each knot in S3 with ≤ 7 crossings and monic Alexander
polynomial.
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4. Let Kn be the n-twist knot in S3, and let (Mn, γ) be sutured manifold
given by the complement of its standard Seifert surface with a longi-
tudinal suture. Use a disk-decomposition to compute SFH(Mn, γn).

5. As in the last problem, but using the pretzel knot P (3, 3, 3). Draw an
arc diagram for (M,γ) and use it to compute SFH(M,γ).

6. Let K be the (2, 5) torus knot. Use the mapping cone to compute the
homology of p surgery on K for p = −3, 0, 3.

7. Let K ⊂ S3 be a knot, and let C+(n,K) be the mapping cone for
n surgery on K. Show that if n > 0, the map G+

n,sk
: CF+(S3) →

C+(n,K) vanishes on all elements of sufficiently high degree. Con-
versely show that if n < 0, show that it is an isomorphism in high
degrees.

8. With notation as in the previous problem, compare the relative grad-
ings of the images of G−1,si for differing values of i. Check that it
is compatible with the expected shift in the absolute grading corre-
sponding to the map F+

W−1(K),si
.

9. Suppose K ⊂ Y is a knot in a homology sphere, and let g(K0) be
the minimal genus of a representative of H2(K0). Show by example
that we can have g(K0) < g(K). (Hint: start with a 2 component
link whose algebraic linking number is 1 but whose geometric linking
number is > 1.)

10. Suppose K ⊂ S3 is a knot, and that Kn is an L-space for some n > 0.
Show that each of the groups Âi appearing in the mapping cone must
be Z. If each Âi ' Z, show that Kn is an L -space if and only n ≥
2g(K)− 1.



Lecture 4

What is an L-space?

We have seen that, to a rational homology sphere Y and a Spinc-structure
s ∈ Spinc(Y ) Heegaard Floer homology assigns a group ĤF (Y, s). For the
purposes of this lecture, we will restrict attention to coefficients in the two
element field F; as a result, the invariant is just a vector space. In it’s
simplest form, the homological grading is a Z/2Z-grading and, relative to

this grading, these homology groups enjoy the property that χ(ĤF (Y, s)) =
1. Said another way,

dim(ĤF (Y, s)) ≥ 1.

Definition 4.1. An L-space is a rational homology sphere with simplest-
possible Heegaard Floer homology, in the sense that dim(ĤF (Y, s)) = 1 for
every s ∈ Spinc(Y ). Equivalently, L-spaces satisfy the equality

dim ĤF (Y ) = |H1(Y ;Z)|.

Notice that S3 is a first example of an L-space since ĤF (S3, s0) = ĤF (S3) ∼=
F where s0 is the unique Spinc-structure on S3. Consequently, the simplicity
of the Heegaard Floer homology associated with L-spaces may be viewed as
an inability to distinguish S3 from Y in any given Spinc-structure, at least
as a graded group. (Of course, the number of Spinc-structures alone —that
is, the order of the group H1(Y ;Q) = H2(Y ;Q) — may well be enough to
distinguish Y from S3.)

A large class of examples of L-spaces is given by lens spaces where, in keeping
with our restriction to rational homology spheres, S2 × S1 is not included

39
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as a lens space.

Exercise 4.2. Working from the definition, compute the Heegaard Floer
homology of a lens space L(p, q).

In fact, L-space is short for Heegaard Floer homology lens space. From
the longer moniker, it should be clear that there is a direct analogy with
homology spheres with respect to H1(−;Z), or rational homology spheres
with respect to H1(−;Q). Namely, these are the objects that the invariant
of interest fails to separate from some standard, simple object.

Recall that ĤF (Y ) may be derived form a somewhat richer invariantHF+(Y );

this latter object is a module over F[U ] and ĤF (Y ) is the cone on the map
U : HF+(Y )→ HF+(Y ).

Definition 4.3. The reduced Heegaard Floer homology of Y is identified
with the torsion of HF+(Y ) as a F[U ]-module.

This gives rise to an alternate definition for L-spaces.

Exercise 4.4. Show that a rational homology sphere Y is an L-space if and
only if HFred(Y ) vanishes.

As a result, given an L-space Y we have that HF+(Y, s) ∼= M+ for every
s ∈ Spinc(Y ).

There is some additional structure that will not feature heavily in this lec-
ture, but which is extremely important to the theory more generally. While
an L-space is indistinguishable from a lens space, it may be distinguished
as a graded group by the d-invariants, or, correction terms. Recall that his
is a rational number d(Y, s) assigned to the element in lowest U -degree in
HF+(Y, s) ∼= M+.

Example 4.5. The Poicaré conjecture, now known to be true by Perelman’s
work, was originally (falsely) stated by Poincaré for homology groups and
not homotopy groups. Poincaré quickly corrected his own mistake, and
produced an example of a three-manifold Y for which H1(Y ; bZ) = 0 — this
is now known as the Poincaré sphere [Poi10]. There are many constructions
known for this manifold; see Rolfsen for an illustrative tour [Rol76].

In order to see the fundamental group immediately,the Poincaré may be
obtained by considering the quotient of SO(3)/I, where I is the icosahedral
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group, that is, the rotational symmetry group of the regular icosahedron.
The universal cover of SO(3) is S3 and the perfect double-cover of I in S3

is the binary icosahedra group, denoted Ĩ. The Poincaré homology sphere
is Y ∼= S3/Ĩ, and π1(Y ) is therefore isomorphic to the (perfect) group Ĩ.

This manifold turns out to be an L-space, so that ĤF (Y ) ∼= ĤF (Y ). How-
ever, d(S3) = 1 and d(Y ) = ±2 (depending on the orientation).

Among integer homology spheres, L-spaces appear to be quite rare. In fact,
we have now recorded a list of known irreducible examples.

Question 4.6. Are the only irreducible L-space integer homology spheres
the Poincare homology sphere, its mirror image, and the three-sphere?

The answer to this question is conjectured to be yes; this conjecture appears
to be due, by general consensus, to Ozsváth and Szabó.

While, at first blush, the study of L-spaces may seem to be simply a question
of better understanding the behaviour of a given — in this case relatively
new — invariant, there is much more going on. Indeed, L-spaces come up
frequently in applications of Heegaard Floer homology and, consequently,
better understanding this class of manifolds lies at the heart of a great
many problems whose solution might apply Heegaard Floer homology. We
will illustrate this through an exercise. First, we construct an important
class of three-manifolds: Two-fold branched covers.

Recall that the knot group π1(K) is identified with the group π1(S3 r
ν(K)), where ν(K) is an open tubular neighbourhood of K. Since H1(S3 r
ν(K);Z) ∼= Z, there is a unique non-trivial projection π1(K)→ Z/2Z. Con-
sider the two-fold cover M → S3rν(K) determined by this projection, that
is, π1(M) ∼= ker(π1(K)→ Z/2Z).

Exercise 4.7. Show that there is a unique extension of M to a closed
manifold ΣK by attaching a solid torus D2 × S1 in such a way that the
resulting cover ΣK → S3 is one-to-one along the knot K.

The closed manifold ΣK is called the two-fold branched cover of K. It is the
two-fold branched cover of S3, branched along the knot K. Note that this
is sometimes called the double branched cover or the branched double-cover.
Now for the exercise.



42 LECTURE 4. WHAT IS AN L-SPACE?

ExerciseF 4.8. Use Heegaard Floer homology to prove that reduced Kho-
vanov homology detects the trivial knot, assuming Conjecture 4.6. To do
this, you will make use of the fact that (1) there is a spectral sequence with

E2 = K̃h(K) and converging to E∞ = ĤF (−ΣK) [OS05b]; and (2) that
the Poincaré homology sphere (indeed, any two-fold branched cover with
finite fundamental group) is realised as a two-fold branched cover of S3 in
a unique way [Wat12]. In this case, the branch set is the (3, 5)-torus knot;
you might try and convince yourself of this.

A recent result of Kronheimer and Mrowka establishes that K̃h(K) ∼= F if
and only if K is the trivial knot [KM11]. This uses a variant of the spectral
sequence used in the previous exercise, which converges instead to instanton
Floer homology.

Examples

The following are some natural classes of L-spaces.

Example 4.9. Suppose Y has elliptic geometry, that is, Y = S3/Γ where
Γ is a subgroup of the O(4), the isometry group of the sphere. For example,
the Poincaré sphere admits elliptic geometry. Note that manifolds admitting
eliptic geometry necessarily have finite fundamental group; the converse to
this assertion holds as a result of Perelman’s proof of geometrization. Work
of Ozsváth and Szabó establishes that every such Y is an L-space [OS05a].

Example 4.10. If K is an alternating knot (or, more generally, a non-split
alternating link), then ΣK is an L-sapce [OS05b]. This immediately gives
rise to hyperbolic examples of L-spaces.

Note that the proof of this fact singles out an apparently more general class
of links. First recall that given a crossing in in some fixed diagram of a
link there are two resolutions of the crossing that yield diagrams with one
fewer crossing:

10

The set of quasi-alternating links Q is the smallest set of links contain-
ing the trivial knot that is closed under the following relation: if L ad-
mits a projection with distinguished crossing L( ) so that det(L( )) =
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det(L( )) + det(L( )) where L( ), L( ) ∈ Q, then L = L( ) ∈ Q as
well.

Those familiar with Khovanov homology will recognize these resolutions as
a first step in constructing a chain complex. It is a result of Manolescu
and Ozsváth that K̃h(L) is a supported in a single diagonal. It follows

from this fact that dim K̃h(L) = det(L) = |H1(ΣL;Z)|. Now the spectral

sequence used (as a black box!) in Exercise 4.8 shows that dim ĤF (ΣK) =
|H1(ΣL;Z)| whenever L is quasi-alternating.

Exercise 4.11. Prove that alternating knots are quasi-alternating.

ExerciseF 4.12. Applying the surgery formula for Heegaard Floer homol-
ogy to the two-fold branched covers of {L( ), L( ), L( )}, prove directly
that if L ∈ Q then ΣL is an L-space.

A conjectured connection with the fundamental group

It is natural to ask if there is a characterization of L-spaces that is topological
and, in particular, makes no reference to Heegaard Floer homology. Closely
related to this is the question of whether a connection between Heegaard
Floer homology and the fundamental group exists.

Examples correlating Heegaard Floer homology and left-orderability began
to appear (in print) in 2009 [Pet, Wat09]; examples were likely noticed prior.
The following is formalized in the work of Boyer, Gordon and Watson.

Conjecture 4.13. Let Y be an irreducible, closed, connected, orientable
three-manifold. Then Y is an L-space if and only if π1(Y ) is not left-
orderable.

Notice that, since irreducibility has been required, both the non-left-orderability
of π1(Y ) as well as the definition of L-space restrict Y to the class of rational
homology spheres.

Exercise 4.14. Irreducibility is required: IfHFred(Y ) 6= 0 thenHFred(Y#Y ′) 6=
0 but, on the other hand, if π1(Y ′) is not-left-orderable, then neither is
π1(Y#Y ′) ∼= π1(Y ) ∗ π1(Y ′). Can you give an explicit example?

In this context, the class of non-left-orderable groups presents a natural
expansion of the class of finite groups. In the same way, L-spaces include
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the class of manifolds with elliptic geometry but are apparently a much
larger class.

ExerciseF 4.15. Prove that the Weeks manifold (compare Exercise 2.3) is
an L-space. Hint: The Weeks manifold is surgery on the Whitehead link.

Seifert fibred spaces

A Seifert structure on a three-manifold is a foliation by circles; a simple
example is given by D2 × S1. This example is a little misleading, since not
every Seifert structure is a circle bundle over a surface. Indeed, for a given
pair of relatively prime integers (p, q), with p ≥ 1, we may define

Vp,q = (D2 × I)/{(x, 1) = (e
2πi p

q , 0)}.

This quotient is homeomorphic to a solid torus, though a p
q -twist has been

added. As a result the induced foliation by circles is non-standard: The core
circle of D2 × S1 is now a singular fibre of order p whenever p > 1 (the V1,p

are, in fact, circle bundles).

We can take this to be the definition of a singular fibre in a Seifert structure
in general, sine a result of Epstein establishes that every Seifert structure on
the solid torus is fibre-preserving diffeomorphic to one of these Vp,q [Eps72].
That is, a Seifert structure on an arbitrary three-manifold is a foliation by
circles such that the tubular neighbourhood of any fibre is fibre-preserving
diffeomorphic to some Vp,q. A manifold with a fixed Seifert structure is
called a Seifert fibred space.

Note that the index p ≥ 1 of the fibred solid torus is the index of the fibre in
the definition above; the fibre is singular or exceptional if p > 1. In general,
the leaf space (or, orbit space) of a Seifert fibred space is a surface together
with a finite collection of points, corresponding to the image of the singular
fibres, labeled by the index of these fibres. This leaf space is called the base
orbifold of the Seifert fibred space. Note that the underlying surface need
not be orientable, even if the three-manifold is; fibres may be coherently
oriented locally, but need not admit a global orientation that is coherent
with an orientation on the manifold.

The conjecture is known to hold for Seifert fibred spaces.

Theorem 4.16. Suppose Y is a closed, connect, orientable Seifert fibred
space. Then π(Y ) is left-orderable if and only if Y is an L-space.
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Proof. Let Y be a Seifert fibred space. There is a short exact sequence

1 〈〈ϕ〉〉 π1(Y ) πorb
1 (B) 1

where the subgroup 〈〈ϕ〉〉 the normal closure of a regular fibre ϕ (see [Sco83,
Lemma 3.2] for details). The quotient πorb

1 (B) is the orbifold fundamental
group of the leaf space B with underlying closed surface B (that it, B is
obtained by ignoring the marked points recording the singular fibres in B).
As a result, both π1(B) and H1(B;Z) are quotients of πorb

1 (B). This places
strong restrictions on B whenever H1(Y ;Q) = 0. Indeed, surjectivity is
preserved under abelianization and hence the surjection π1(Y ) → π1(B)
gives a surjection H1(Y ;Z)→ H1(B;Z) so it must be that H1(B;Z) is finite
hence B is one of S2 or RP 2.

As a result, there are two cases to consider when the given Seifert fibred
space is a rational homology sphere, as in the present setting. We appeal
then to the work of Boyer, Rolfsen and Wiest [BRW05, Theorem 1.3]:

(1) If Y has base orbifold with underlying surface S2, then π1(Y ) is left-
orderable if and only if Y admits a co-orientable taut foliation; and

(2) if Y has base orbifold with underlying surface RP 2, then π1(Y ) is not
left-orderable.

In the first case, work of Lisca and Stipsicz completely characterises non-L-
spaces in terms of existence of co-orientable taut foliations [LS07]. In the
second case, a calculation using the surgery exact sequence is required to
establish that every Seifert fibred rational homology sphere with leaf space
RP 2 is an L-space [BGW13]. In particular, this class of manifolds may be
constructed inductively from circle bundles over RP 2 and Dehn surgery on
a regular fibres.

This proof hints at another structure on three-manifolds that we will return
to later: a co-orientable taut foliation is a foliation of a three-manifold by
surfaces that are cooriented and for which there is a closed curve meeting
every leaf of the foliation transversely.

Note that Seifert fibred spaces account for 6 of the 8 geometries arising on
geometric three-manifolds [Sco83]. Recall that a general three-manifold is



46 LECTURE 4. WHAT IS AN L-SPACE?

first decomposed along spheres and tori before each of the pieces is endowed
with a geometric structure.

In the general setting, an exciting aspect of the conjecture — whether or not
you think it is a reasonable one — is the predictions it makes based on the
fact that two apparently unrelated concepts are brought into equivalence
with one another. Simplicity in Heegaard Floer theory, on the one hand,
and the non-existence of an auxiliary structure on the fundamental group,
on the other. We’ll expand on two instances of this in the following sections.

Something L-spaces predict about left-orderable groups

An immediate question whenever a statement is proved for Seifert fibred
spaces is “what about the hyperbolic case?”, since hyperbolic three-manifolds
constitute (in some sense) the generic three-manifold (at least in the geo-
metric setting). Fortunately, we have seen a very large and easy to describe
class of L-spaces that contain many hyperbolic examples:

Theorem 4.17 (Ozsváth-Szabó [OS05b]). If K is an alternating knot then
ΣK is an L-space.

In this case, the conjecture predicts that π1(ΣK) is not-left-orderable. In
the absense of the conjecture, there is no reason to expect that this should
be true, especially in light of the fact that many discrete, torsion free sub-
groups of PSL2(C) will arise from this construction. The fact that ΣK is
a hyperbolic three-manifold, in some generic sense, is due to the tricotomy
for knots in S3: If K is a torus knot or a satellite knot then ΣK is a Seifert
fibred space or contains an essential torus, respectively. Neither of these
is hyperbolic. Thus, among hyperbolic knots, we have that either K is
Montesinos (this includes two-bridge knots) or it is not — both classes are
infinite. The later class will have hyperbolic two-fold branched covers. We
note that, by restricting to knots, Sol geometry does not arise (see the next
section, particularly Exercise 4.26).

Nevertheless, the conjecture holds up in this setting.

Theorem 4.18 (Boyer-Gordon-Watson [BGW13]). If K is an alternating
knot then π1ΣK is not left-orderable.
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x0

x1

x2
The obvious approach to proving this theorem is
to find a presentation for π1(ΣK) that depends on
the diagram and assuming that the group is left-
orderable, show that a contradiction is reached when
the diagram is alternating. The original proof makes
use of a presentation called Wada’s group that de-
pends on the diagram [BGW13]; Greene gives a
similar proof using a group presentation appealing to graph theoretic data
that is essentially dual to Wada’s [Gre]. In both cases, the group presenta-
tion is indexed by the black graph associated with the knot diagram. This
is a signed graph in general, but the signs all agree for alternating knots
(up to taking mirrors, we may assume that the setup is as in the diagram
for the figure eight knot shown ion the right). In particular, assign a ver-
tex to each white region and an edge to each crossing. Label the vertices
{x0, x1, . . . , xn}. Then Greene’s presentation has generators xi and relations∏

edges (xj ,xi) incident to xi

(x−1
j xi)

and the additional relation x0 (that is, there is a root vertex that is set to
the identity in the group). Greene proves that the group obtained in this
way is isomorphic to π1(ΣK) [Gre13].

For the example shown, we obtain

π1(Σ41) ∼=〈x0, x1, x2|x0, x
−1
2 x1x

−1
2 x1x

−1
0 x1, x

−1
1 x2x

−1
1 x2x

−1
0 x2〉

∼=〈x1, x2|(x−1
2 x1)2x1, (x

−1
1 x2)2x2〉

which can’t be left orderable: The presentation is symmetric so if x1 < x2

and x2 is positive then (x−1
1 x2)2x2 is positive, a contradiction. This should

set you at ease, as the two-fold branched cover of a two-bridge knot is always
lens space, and finite cyclic groups (Z/5Z, in this example) cannot be left-
ordered. There’s a little more work to do, but the real point here is that
we can choose a maximal, positive element among the generators — it’s a
finite set, and we can switch to the opposite order if needed.

Exercise 4.19. Using Greene’s presentation, complete the proof of Theorem
4.18.

We will outline a different proof that illustrates just how special the class of
two-fold branched covers of alternating knots is, even among L-spaces. This
is due to Levine and Lewallen [LL].
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First, consider an abelian group on 4 symbols X = {0,+,−, ∗} where
multiplication is defined according to (1) 0ε = ε0 = 0 for ε ∈ X; (2)
++ = −− = + ; (3) +− = −+ = −; and (4) ε∗ = ∗ε = ∗ for ε ∈ {+,−, ∗}.
Given a group presentation 〈x1, . . . , xm|r1, . . . , rn〉 form a matrix (εij) with
entries in X according the the rules:

eij =


0 if neither xi nor x−1

i occur in the relator rj ;

+ if xi appears in the relator rj , but x−1
i does not;

− if x−1
i appears in the relator rj , but xi does not; and

∗ if both xi and x−1
i occur in the relator rj .

With this matrix assigned to the group presentation for G in hand, Levine
and Lewallen prove the following criterion:

Exercise 4.20. Suppose that for any d1, . . . , dm ∈ {0,+,−}, not all zero,
the result of multiplying the ith row of the matrix (εij) by di has a non-
zero column with entries only in {+,−}. Prove that G is not left-orderable.
Trick: Left-order G and choose di according to the signs of the generators.

This criterion is cleverly applied to a particular class of groups:

Proposition 4.21. Let G ∼= 〈x1, . . . , xn|r1, . . . , rn〉 with associated matrix
(εij) satisfying

(1) There exists a permutation σ0 ∈ Sn such that the entries {εiσ0(i)} are
non-zero for all 1 ≤ i ≤ n;

(2) For any permutation σ ∈ Sn with {εiσ(i)} all non-zero, we have εiσ(i) ∈
{+,−} for all 1 ≤ i ≤ n; and

(3) For any two permutations σ, σ′ ∈ Sn satisfying (2), we have

sign(σ)
∏n
i=1 εiσ(i) = sign(σ′)

∏n
i=1 εiσ′(i).

Then G is not left-orderable.

Proof. Up to reordering the generators, we may assume that σ0 is the iden-
tity so that, in application of (2), εii is either + or − for every 1 ≤ i ≤ n. To
see that G is not left-orderable we will show that (εij) satisfies the hypothesis
laid out in Exercise 4.20.
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For a contradiction, select the di and construct a matrix (mij) by multiplying
the ith row of (eij) by di where every column contains an off-diagonal entry
that is neither + nor −. We use this information to construct a permutation
σ satisfying (1) and (2) but violating (3) when compared to the identity.

+

− +

−+

−This is a proof whose key ideas can be illustrated on a sim-
ple example: Suppose that m11 = +. Notice that there is
an index i1 for which mi11 = − (this is by our assumption
on (mij) together with property (2)). But now mi1i1 = +
(or perhaps −, but this is not so important), and we can
repeat the process until we get a closed loop. Notice that
some row/columns might be skipped in the process of carrying this out.
However, the result is that if the loop closes up in k-steps then we may
form a k-cycle σ that takes 1 7→ i1, 2 7→ i2, and so forth. The sign of this
permutation is (−1)k−1 and there are k occurrences of −. So we have our
contradiction: You can check that σ satisfies (1) and (2) but we have, buy
construction, that

(−1)2k−1 sign(σ)
∏n
i=1 εiσ(i) = sign(id)

∏n
i=1 εii.

Of course, it might not be possible to start with m11, but the indices can
be reordered after the fact, once you have constructed the loop.

Definition 4.22. A strong L-space is a rational homology sphere admitting
a Heegaard diagram for which dim ĈF (Y ) = |H1(Y ;Z)|. That is, strong L-
spaces can be realised as L-spaces on the chain level.

ExerciseF 4.23. Given a strong Heegaard diagram for a strong L-space,
show that the resulting group presentation satisfies the hypothesis of Propo-
sition 4.21.

It is an observation of Greene that alternating diagrams of knots give rise
to Heegaard diagrams for the two-fold branched cover for which there is a
single generator in each Spinc-structure [Gre13]. Interestingly, there are no
known examples of strong L-spaces that are not the two-fold branched cover
of an alternating knot (or, non-split alternating link).

Something left-orderable groups predict about L-spaces

In the other direction, a great deal is known about the left-orderability of
certain classes of three-manifold groups, due to the work of Boyer, Rolfsen
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and Wiest. For example:

Theorem 4.24 (Boyer-Rolfsen-Wiest). If Y is a rational homology sphere
admitting Sol geometry the π1(Y ) is not left-orderable.

In this case, we have a new suggested class of L-spaces. As expected, at
least if one trusts the conjecture, we have:

Theorem 4.25 (Boyer-Gordon-Watson). If Y is a rational homology sphere
admitting Sol geometry then Y is an L-space.

α

β1

β2

We will outline the proof as it serves to advertise some
additional structure in Heegaard Floer theory that is not
emphasized in these notes. The first fact we make use
of is a characterization of Sol rational homology spheres:
They are all of the form Y = M ∪h M where M is the
twisted I-bundle over the Klein bottle, and h is a home-
omorphism identifying the torus boundaries of M . The
twisted I-bundle over the Klein bottle is an orientable
three-manifold admitting a pair of Seifert structures: One
with base orbifold a disk with two cone points each of or-
der 2; the other with base orbifold a Möbius band. A
Heegaard diagram describing this manifold is shown on the right. The β-
curves bound the collapsing disks in the handlebody shown, and notice that
there is one fewer α-curve corresponding to the fact that M has a torus
boundary.

Exercise 4.26. Compute the fundamental group of M based on the given
Heegaard diagram, and show that it is isomorphic to the Klein bottle group.
Use the description given to exhibit both Seifert structures on M . Hint:
Decompose the handlebody into solid tori first. Finally, can you make use
of the obvious symmetry to realise M as a two-fold branched cover?

Recent work of Lipshitz, Ozsváth and Thurston has introduced a gluing
theorem to Heegaard Floer homology [LOTa]. This comes from a theory for
three-manifolds-with-boundary called bordered Heegaard Floer homology,
which ultimately allows us to decompose along the torus and obtain ĤF (Y )
as the homology of a chain complex of the form

ĈFA(N)� ĈFD(N).
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Rather than providing all the details of this theory we will just use the
example at hand to introduce all of the players. For the interested reader
there is a good overview of the theory [LOT11] and an excellent set of notes
from a recent summer school [LOTb]

The first hint that the above tensor-like statement is an oversimplification
is that the dependence on h has vanished. In bordered Floer homology, the
boundary data is kept track of by an algebra A, in this setting called the
torus algebra. How this algebra acts on two flavours of homological invariants
in a way that depends on, and is highly sensitive to, a parametrization of
the boundary. In the present setting, we have a very natural choice of basis
for H1(∂M bZ) given by the two fiber slopes (that is, regular fibers that we
choose in the boundary). Let ϕ be a regular fiber for the Seifert structure
over the disk, and let λ be the regular fiber for the Seifert structure over the
Möbius band.

Exercise 4.27. Find a pair of curves in the handlebody describing M that
avoid the α arc and intersect once transversally. Argue that this describes
a basis for H1(∂M bZ) and show that you can make your choice coincide
with (ϕ, λ).

Recall that the longitude of a knot K in S3 is specified by the intersection
of a Seifert surface for K with ∂(S3 r ν(K)). The fiber slope λ plays the
role of the longitude, in the following sense:

Exercise 4.28. Prove that, as an element of H1(M ;Z), [λ] has order 2.

For the purposes of this discussion (in particular, this only makes sense in the
case of torus boundary!), a bordered structure on M is given by the ordered

triple (M,λ, ϕ). Now ĈFD(M,λ, ϕ) is a left differential module over A and

(a type D structure) and ĈFA(M,λ, ϕ) is a right A∞-module over A and (a
type A structure). These homological objects represent different packaging
of equivalent data; they are dual to each other in an appropriate sense. In
this notation

ĈFA(M,λ, ϕ)� ĈFD(M,λ, ϕ)

corresponds to the homeomorphism determined by {h(λ) = ϕ, h(ϕ) = λ}
(on homology, h∗ = ( 0 1

1 0 )) and the product � is a version of the tensor
product taken over the idempotent subring of A.

The main point here is that, in order to alter the identification h, we are
forced to re-parametrise the boundary data. For example, to calculate the
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result of identifying {h(λ) = ϕ + λ, h(ϕ) = λ} (that is, h∗ = ( 1 1
1 0 )), we

would want
ĈFA(M,λ, ϕ)� ĈFD(M,λ, ϕ+ λ).

At this stage a striking property of the bordered invariants for the twisted
I-bundle over the Klein bottle is observed by a direct calculation: There is
a homotopy equivalence between the differential modules

ĈFD(M,λ, ϕ+ λ) ∼= ĈFD(M,λ, ϕ)

meaning that the chain complexes

ĈFA(M,λ, ϕ)� ĈFD(M,λ, ϕ+ λ) ∼= ĈFA(M,λ, ϕ)� ĈFD(M,λ, ϕ)

are homotopy equivalent and hence have the same homology.

Now in the case where one fibre slope is glued to another, it is possible to
extend the Seifert structures on both manifolds to a Seifert structure on the
closed manifold. In the case at hand, this means that N ∪h N is actually
Seifert fibred for certain identifications, and in these cases we already know
that the conjecture holds (see Theorem 4.16). In fact, for any matrix rep-
resentative of h∗ for which there is a zero in a corner, the resulting N ∪h N
is Seifert fibered. On the other hand, at the level of Heegaard Floer homol-
ogy, as a result of this property of the bordered invariants of the twisted
I-bundle over the Klein bottle, there is no distinction between identifying
with a homeomorphism of the form ( ∗ ∗1 ∗ ) versus one of the form( 0 ∗

1 ∗ ).

This reduces to the case of Seifert fibred L-spaces, and ultimately provides
a base case for induction to deal with homeomorphisms of the form ( ∗ ∗n ∗ ).

Remark 4.29. The property that ĈFA(M,λ, ϕ) � ĈFD(M,λ, ϕ + λ) as
differential modules over A establishes that M is a Heegaard Floer homology
solid torus, by analogy with Heegaard Floer homology lens spaces. It turns
out that, just as in the case of L-spaces versus lens spaces, there are lots
(infinitely many, in fact) of Heegaard Floer homology solid tori that are not
from D2 × S1 [Wat].

Further reading

The first examples illustrating the correspondence in the conjecture were
very likely those provided by Seifert fibred spaces with orientable base orb-
ifold, as this follows immediately on juxtaposition of the results of Boyer,
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Rolfsen and Wiest [BRW05] and Lisca and Stipsicz [LS07]. This is recorded
in print by Peters [Pet] and the full statement for Seifert fibered spaces ap-
pears in [Wat09]. Peters gives a range of other interesting examples that
we have not include here corresponding to families of p-fold cyclic branched
covers. Another class of examples is studied by Li and Watson [LW14]:
If Y is an L-space admitting a genus one open book decomposition then
π1(Y ) is not left-orderable. This implies, for instance, that the two-fold
branched covers of quasi-alternating links with braid index at most three
have non-left-orderable fundamental group.

There is an important body of computational evidence for the conjecture
thanks to work of Dunfield that should not go unmentioned. This is men-
tioned on the blog Low Dimensional Topology [Dun11] however there have
been developments since then that will limey appear in print soon. Dun-
field’s work represents a rather intensive study of low-volume hyperbolic
three-manifolds with regards to the conjecture, and the take home point is
that the conjecture holds up on this class (there are roughly 11,031 closed
three-manifolds in this sample) with surprising odds: The naive probability
that the data found supports the conjecture (if one takes the view that it is
false and looks for a counterexample) is 10−29. With some adjustments for
the samples, Dunfield has estimated that the odds are probably more like
10−18, though this is admittedly splitting hairs.

An interesting fact is that every example we have discussed, as well as those
considered by Dunfield, admits a strong inversion (that is, an involution with
one-dimensional fixed point set). It tursn out that this is not a necessary
condition for L-spaces: Dunfield, Hoffman and Licata have very recently
given examples of L-spaces with trivial symmetry group [DHL].
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Collected Exercises

4.1 Lecture 1

In doing the exercises, you should take as given the properties of Floer
homology stated in the lecture.

1. Let K be the unknot in S3, and let W = W−1(K). Show that the map
F−W,s±1

: HF−(K) → HF−(K) is an isomorphism. What is the map

F−W,s±k
for other values of k?

2. (The blowup formula) Given a cobordism W : Y1 → Y2, let W ′ =
W ⊕ (−CP2), and let E ∈ H2(W ′) be the exceptional divisor. (That
is, a sphere representing the class of a generator of H2(−CP2).) If
s ∈ Spinc(W ), show that for odd k there is a unique sk ∈ Spinc(W ′)
which agrees with s on W ′ − ν(E), and which has 〈c1(sk), [E]〉 = k.
Use the first problem to show that F ◦W ′,s±1

= ±F ◦W,s. What happens

if instead we take W ′ = W#CP2?

3. If S ⊂ Y is an embedded surface, let

HF ◦(Y, S, k) =
⊕

{s | 〈c1(s),[S]〉=k}

HF ◦(Y, s).

Deduce the adjunction property in the special case where Σ · Σ = 0,
g(Σ) > 0 from the fact that HF ◦(S1 ×Σ,Σ, k) = 0 for k > 2g(Σ)− 2.
(We’ll see how to prove this in the last lecture.)

4. Use the blow-up formula and exercise 3 to prove the adjunction prop-
erty for all Σ with genus > 0. (Hint: blow up repeatedly to produce a
surface Σ′ with self-intersection 0.)

55
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5. Use adjunction to show that if S ⊂ Y is an embedded surface of genus
> 0, then HF ◦(Y, S, k) = 0 whenever k > 2g(S) − 2. Deduce that
there are only finitely many s for which HF ◦(Y, s) 6= 0.

6. Let W1 : S3 → S1 × S2 and W2 : S1 × S2 → S3 be the cobordisms
given by addition of a 1 handle and a cancelling 2-handle respectively.
Use what you know about grading shifts, together with the fact that
W2◦W1 is the identity cobordism, to determine the maps F̂W1 and F̂W2 .
Similarly for the cobordisms W ′2 : S3 → S1×S2 and W3 : S1×S2 → S3

given by addition of a 2-handle and a cancelling 3-handle.

7. Given that c1(s|∂W ) is torsion, explain how to make sense of the quan-
tity c1(s)2appearing in the formula for the degree shift. (Note that a
priori c2

1(s) is a class in H4(W ) = 0 .) Compute the degree shift asso-
ciated to the map F ◦( W, sk), where W = W−p(K). Verify that if sk1
and sk2 restict to the same Spinc structure on ∂W then the difference
in the corresponding degree shifts is an even integer.

8. Identify the S1-equivariant analog of the second exact sequence of
Property 8 . What about the spectral sequence?

4.2 Lecture 2

1. Show that, given a left-order < on a group G, that

a <̃ b ⇐⇒ a−1 < b−1

for all a, b ∈ G defines a right-invariant, strict total order on the ele-
ments of G. Give the definition of a right-orderable group and prove
that every left-order on G is equivalent to a right-order (and vice
versa). In particular, left- and right-orderable groups are equivalent.

2. Describe the positive cones implicit in Example 2.5 for any integer n
(the case n = 2 is probably most instructive). What if the hyperplane
contains some of the non-trivial group elements of Zn?

3. Prove that the existence of a positive cone for G is equivalent to a
left-order on G. Any positive cone P gives rise to an opposite order:
Take P−1 as positive cone instead. Compare the opposite order with
(the positive cone for) the right-order <̃ of Exercise 2.4
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4. Write down a definition for < on Homeo+(R) as specified by PX of
Example 2.9.

5. F Fix a left orderable group G and denote by LO(G) the set of all
left orders on G. This becomes a topological space with the subbasis
U ba = {<: a < b}. To study this topology further, consider a positive
cone P ∈ LO(G) (compare Exercise 2.8) and prove that there is an
inclusion of sets LO(G) into 2G = {S : S ⊆ G}, the power set of G
(considered as a set). A subbasis for a topology on 2G is given by sets

Ua = {S ⊂ G : a ∈ S} and U ′a = {S ⊂ G : a /∈ S}.

You can prove that the induced relative topology on LO(G) is equiva-
lent to the topology on LO(G) described in terms of the subasis {U ba}.
Using the fact that 2G is a compact topological space (a consequence
of Tychonoff’s theorem), prove that LO(G) is a compact topological
space. Finally, prove that LO(G) is a totally disconnected topological,
that is, that the only connected components are singletons.

4.3 Lecture 3

1. Show that SymnC = Cn (Hint: consider the correspondence which
assigns to a monic polynomial of degree n its roots.) Deduce that
SymnΣ is a complex manifold. Show that SymnCP1 = CPn.

2. Show that D(φ#ψ) = D(φ) +D(ψ).

3. Show that ε(x,y) + ε(y, z) = ε(x, z).

4. Let φΣ ∈ π2(x,x) correspond to the domain DΣ which has multiplicity
1 everywhere in Σ. Show that µ(φΣ) = 2.

5. Let J be a complex structure on SymgΣ induced by a complex struc-
ture on Σ. Use the Riemann mapping theorem to show that if D(φ)
is a bigon, then #M(φ) = ±1.

6. Suppose D(φ) is a convex rectangle. If ϕ is a holomorphic representa-
tive of φ, describe Sφ, p and π. Show that #M(φ) = ±1.

7. Using the Heegaard diagram of S3 − ν(T ) drawn in lecture, draw a
Heegaard diagram for T0 (0-surgery on the trefoil). List the generators
and partition them into equivalence classes. What happens if we do a
different surgery on T?



58 LECTURE 4. WHAT IS AN L-SPACE?

8. Show that ĤF satisfies the Property 1 from the first lecture. (Hint: for
the connected sum, put the basepoint in the connected sum region.)

9. Construct the exact sequences and spectral sequences of Property 8
from the first lecture.

10. Use Lipshitz and Lee’s theorem to compute the differences in absolute
grading for the generators of ĤF (L(5, 1)). Do the same thing for
L(5, 2).

4.4 Lecture 4

1. Show that a rational homology sphere Y is an L-space if and only if
HFred(Y ) vanishes.

2. Show that there is a unique extension of M to a closed manifold ΣK

by attaching a solid torus D2 × S1 in such a way that the resulting
cover ΣK → S3 is one-to-one along the knot K.

3. F Use Heegaard Floer homology to prove that reduced Khovanov ho-
mology detects the trivial knot, assuming Conjecture 4.6. To do this,
you will make use of the fact that (1) there is a spectral sequence

with E2 = K̃h(K) and converging to E∞ = ĤF (−ΣK) [OS05b]; and
(2) that the Poincaré homology sphere (indeed, any two-fold branched
cover with finite fundamental group) is realised as a two-fold branched
cover of S3 in a unique way [Wat12]. In this case, the branch set is
the (3, 5)-torus knot; you might try and convince yourself of this.

4. Prove that alternating knots are quasi-alternating.

5. Irreducibility is required: If HFred(Y ) 6= 0 then HFred(Y#Y ′) 6= 0
but, on the other hand, if π1(Y ′) is not-left-orderable, then neither is
π1(Y#Y ′) ∼= π1(Y ) ∗ π1(Y ′). Can you give an explicit example?

6. F Prove that the Weeks manifold (compare Exercise 2.3) is an L-space.
Hint: The Weeks manifold is surgery on the Whitehead link.

7. Using Greene’s presentation, complete the proof of Theorem 4.18.

8. Suppose that for any d1, . . . , dm ∈ {0,+,−}, not all zero, the result of
multiplying the ith row of the matrix (εij) by di has a non-zero column
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with entries only in {+,−}. Prove that G is not left-orderable. Trick:
Left-order G and choose di according to the signs of the generators.

9. F Given a strong Heegaard diagram for a strong L-space, show that
the resulting group presentation satisfies the hypothesis of Proposition
4.21.

10. Find a pair of curves in the handlebody describing M [the twisted
I-bindle over the Klein bottle] that avoid the α arc and intersect once
transversally. Argue that this describes a basis for H1(∂M bZ) and
show that you can make your choice coincide with (ϕ, λ).

11. Prove that, as an element of H1(M ;Z), [λ] has order 2.

4.5 Lectures 5 and 6

1. Suppose (M,γ) is a sutured manifold andD ↪→M is a properly embed-
ded disk with |∂D ∩ γ| = 2. Show that the sutured manifold (M ′, γ′)
obtained by decomposing (M,γ) along D does not depend on which
orientation we give D. (The manifold (M ′, γ′) is said to be obtained
from (M,γ) by a disk decomposition.) Use the decomposition formula
to show that SFH(M ′, γ′) ' SFH(M,γ).

2. Prove the result of the first exercise directly from the definition of
SFH.

3. A sutured manifold (M,γ) is disk-decomposable if it can be reduced to
the trivial sutured manifold (B3, γ0) be repeated disk decompositions.
Show (without appealing to Floer homology) that if (M,γ) is disk
decomposable, it is a product manifold. Find a disk decomposition for
the complement of the trefoil knot, and deduce that it is fibred. Do
the same for each knot in S3 with ≤ 7 crossings and monic Alexander
polynomial.

4. Let Kn be the n-twist knot in S3, and let (Mn, γ) be sutured manifold
given by the complement of its standard Seifert surface with a longi-
tudinal suture. Use a disk-decomposition to compute SFH(Mn, γn).

5. As in the last problem, but using the pretzel knot P (3, 3, 3). Draw an
arc diagram for (M,γ) and use it to compute SFH(M,γ).



60 LECTURE 4. WHAT IS AN L-SPACE?

6. Let K be the (2, 5) torus knot. Use the mapping cone to compute the
homology of p surgery on K for p = −3, 0, 3.

7. Let K ⊂ S3 be a knot, and let C+(n,K) be the mapping cone for
n surgery on K. Show that if n > 0, the map G+

n,sk
: CF+(S3) →

C+(n,K) vanishes on all elements of sufficiently high degree. Con-
versely show that if n < 0, show that it is an isomorphism in high
degrees.

8. With notation as in the previous problem, compare the relative grad-
ings of the images of G−1,si for differing values of i. Check that it
is compatible with the expected shift in the absolute grading corre-
sponding to the map F+

W−1(K),si
.

9. Suppose K ⊂ Y is a knot in a homology sphere, and let g(K0) be
the minimal genus of a representative of H2(K0). Show by example
that we can have g(K0) < g(K). (Hint: start with a 2 component
link whose algebraic linking number is 1 but whose geometric linking
number is > 1.)

10. Suppose K ⊂ S3 is a knot, and that Kn is an L-space for some n > 0.
Show that each of the groups Âi appearing in the mapping cone must
be Z. If each Âi ' Z, show that Kn is an L -space if and only n ≥
2g(K)− 1.
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