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1 Question 1

From the definition of the Ω parameter:

Ω =
8πGρ

3H2
(1)

where ρ represents the total density of all material in the Universe, show that the quantity:

ρa2(1− Ω−1) = constant (2)

I will ignore the contribution of dark energy when writing the Friedmann equation;

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− kc2

a2
. (3)

In this equation, H is the Hubble parameter, G is the gravitational constant, ρ is the density of the Universe,

k is the curvature of the Universe and c is the speed of light. a is a length parameter, which, by convention,

is often set to 1 at the present time.

The density parameter can also be defined as

Ω =
ρ

ρc
, (4)

where the critical density, ρc, is the value of density required to make k = 0 (producing a Universe with flat
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geometry). We can use this equation to substitute a value for ρ in equation 3, which becomes

H2 =
8πG

3
(ρcΩ)− kc2

a2
. (5)

From the equation for Ω given in the question (equation 1), we can derive an expression for ρc:

Ω =
8πGρ

3H2
,

∴ ρc =
3H2

8πG
. (6)

We can now substitute the expression for ρc from equation 6 into equation 5. We can rearrange the resultant

relation as follows:

H2 =
8πG

3

(
3H2

8πG
Ω

)
− kc2

a2

= H2Ω− kc2

a2

∴ H2a2(Ω− 1) = kc2. (7)

The curvature of the Universe, k, is constant with respect to time. The speed of light c is also a constant.

Therefore, the first time derivative of equation 7 = 0.Equivalently, we can write

H2a2(Ω− 1) = constant. (8)

We were asked to show that the left hand side (LHS) of equation 2 is constant with respect to time.

Equation 2 can be rearranged to give

ρa2(1− Ω−1) = ρa2
1

Ω
(Ω− 1)

At this point we can use equation 1 to substitute for the 1/Ω term above, giving us

ρa2(1− Ω−1) = ρa2
(

3H2

8πGρ

)
(Ω− 1)

=

(
3

8πG

)
×H2a2(Ω− 1). (9)
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Note that this expression (equation 9) is simply equation 7, multiplied by the pre-factor

3

8πG
. (10)

We have shown that equation 7 is constant with respect to time. The pre-factor in expression 10 is comprised

of constants, and is also invariant with respect to time.

d

dt

(
ρa2(1− Ω−1)

)
=

=
3

8πG

d

dt

(
H2a2(Ω− 1)

)
=

3

8πG
× 0 = 0.

∴ ρa2(1− Ω−1) = constant.

By working from the present epoch, and assuming matter dominates now, show that, for a

Universe with arbitrary spatial curvature that contains both radiation and matter components,

the epoch of matter-radiation equality occurs when:

(1− Ω−1)equality =
(1− Ω−1)0

1 + zeq
(11)

where zeq is the redshift corresponding to that time.

The Newtonian fluid equation governs the evolution of density with respect to the pressure in a medium;

ρ̇+ 3
ȧ

a

(
ρ+

p

c2

)
= 0. (12)

In this equation, p is the pressure in the medium and c is the speed of light.

In considering the evolution of the Universe from the epoch of radiation-matter equality, I will apply the

approximation that the evolution has been matter dominated since epoch of equality up to the present epoch.

Matter, in this context, denotes non-relativistic, ”dusty” material, which exerts a negligible pressure on itself.

Hence, we can let p = 0 in equation 12 when considering the evolution from the epoch of matter-radiation

equality. Equation 12 becomes

ρ̇+ 3
ȧ

a
ρ = 0. (13)
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Now I will introduce another expression, which I will show to be equivalent to equation 13:

1

a3
d

dt
(ρa3) =

1

a3

(
ρ
d(a3)

dt
+ a3

d(ρ)

dt

)
=

1

a3
ρ(3)a2

da

dt
+
d(ρ)

dt

= ρ̇+ 3
ȧ

a
ρ.

This is equivalent to the matter-only fluid equation, equation 13.

∴
1

a3
d

dt
(ρa3) = 0. (14)

a is the scale factor for distance in the Universe and is non-zero in general. Hence, from equation 14, we

can infer the following:

d

dt
(ρa3) = 0.

In this equation, the first time derivative of ρa3 is equal to zero. Hence, we can write

ρa3 = constant,

∴ ρ ∝ 1

a3
. (15)

We can use this result to relate the current density to the density at any value of a;

ρ ∝ 1

a3
,

and ρ0 ∝
1

a30
,

∴
ρ

ρ0
=

(a0
a

)3

. (16)

At this point, it is important to note that the absolute value of a is arbitrary, as only the relation (ȧ/a) is

included in the equation of state and the Friedmann equation. Therefore, for convenience, we can set a0 = 1.

When this convention is applied, equation 16 becomes

ρ

ρ0
=

(
1

a

)3

. (17)

I have shown previously that the expression in equation 2 is a constant with respect to time in the Universe.
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Therefore we can write

ρeqa
2
eq(1− Ω−1eq ) = ρ0a

2
0(1− Ω−10 ), (18)

where ρeq, a
2
eq and Ωeq denote the density, scale factor and density parameter at the epoch of matter-radiation

equality. ρ0, a20 and Ω0 denote the density, scale factor and density parameter at the present time.

The redshift of a source of light is given by the following relation

1 + z =
λrecieved
λemitted

=
a(recieved)

a(emitted)
, (19)

where z is the redshift of the source; λrecieved and λemitted are the wavelengths of light received by an

observer and emitted by the source, respectively; a(recieved) is the scale factor of the Universe when the

light is detected and a(emitted) is the scale factor of the Universe when the light was emitted.

For the case of the redshift of the matter-equality epoch relative to the present time, we can write

1 + zeq =
a0
aeq

, (20)

which, under the conventiona0 = 1, becomes

1 + zeq =
1

aeq
(21)

We can rearrange equation 18 to give

(1− Ω−1eq ) =
ρ0
ρeq

(
a0
aeq

)2

(1− Ω−10 ),

=
ρ0
ρeq

(
1

aeq

)2

(1− Ω−10 ). (22)

We can make substitutions from equations 17 and 21 into equation 22 to obtain the following:

(1− Ω−1eq ) =

(
1

aeq

)−3
×
(

1

aeq

)2

× (1− Ω−10 )

= aeq × (1− Ω−10 )

∴ (1− Ω−1eq ) =
1

zeq + 1
× (1− Ω−10 ). (23)

Here I have shown that equation 23 is a valid for a matter dominated evolution from the epoch of matter-

radiation equality.

Given that matter-radiation equality occurs when zeq = 6000, and that the density of matter
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today is ≈ 30% that of the critical density, estimate the density of matter relative to the critical

density at the epoch of matter-radiation equality. Is this result in agreement with what you

would expect?

We can treat Ω0 as 30%, as matter dominates the density at the present time. In other words, I’m

choosing to ignore the present-day contribution of radiation density to our calculation. We can substitute

this value, along with the value provided for redshift, into equation 23 to estimate the density parameter at

the epoch of matter-radiation equality.

(1− Ω−1eq ) =
1− Ω−10

1 + zeq

(1− Ω−1eq ) =
1− (0.3)−1

1 + 6000

∴ Ωeq =

(
1

6001

(
1

0.3
− 1 + 6001

))−1
= 0.9996.

(24)

Note that by definition, at the epoch of matter-radiation equality, the density in matter form was equal to

the density in the form of radiation. Hence, we can argue that at this epoch, the density parameter for

matter was

ΩM =
0.9996

2
≈ 0.5. (25)

One of the problems with traditional big bang scenarios is that for the density parameter to have the value

it does now, it would have to have been either very close to, or exactly, one at the big bang. To account for

this, the curvature parameter, k was introduced.

However, for our purposes, a value of Ωeq ≈ 1 is in agreement with an evolution from a big bang in which

the initial value of Ω was almost exactly unity. Therefore our equations have produced a value of Ωeq that

we would would otherwise expect for this epoch.

What is the temperature at this time?

We can assert that temperature of the CMBR is related to the scale parameter according to T ∝ 1/a
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(see equation 39) . Considering this, we can write the following:

Teq
T0

=
1

aeq

a0
1

=
a0
aeq

∴ Teq = (2.725 Kelvin)
a0
aeq

Note that
a0
aeq

= zeq + 1 (equation 20)

∴ Teq = (2.725 Kelvin)× (6000 + 1) = 16352.725 Kelvin (26)

2 Question 2

The temperature of matter evolves differently to radiation after decoupling. How do the

temperatures evolve prior to decoupling? Justify your answer.

Prior to decoupling, the path-length for radiation is very low as it undergoes Thompson scattering from

matter in a plasma state. Therefore the matter and radiation are kept in a state of thermal equilibrium and

their temperatures are equal; TM = Trad. Therefore, equation 39 would also have applied to matter prior

to decoupling and TM ∝ 1/a.
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Explain, in your own words, the principles of how observations of Type Ia SNe are used

to deduce the expansion rate of the Universe (from detection to production of luminosity,

and including any corrections or caveats required) and whether this approach can address

quintessence.

If we work under the (seemingly correct) assumption that the nature of type Ia SNe are consistent across

all generations of stars, we can plot the apparent brightness of them as a function of apparent redshift (z)

in order to obtain an estimate of the rate of expansion of the Universe. As we measure brightness of these

events to increasingly high z, deviation from a consistent rate of expansion is observed. In cosmological

models, this acceleration is contributed to the combined influence of the curvature of space-time (k) and

dark energy (Λ).

Difficulty lies in the detection of suitably large samples of these SNe, as only a small number occur per galaxy

every thousand years. In order to facilitate the acquisition of a statistically significant data set, Perlmutter

(1999) employed a batch surveying scheme for the initial detection of type Ia SNe, in collaboration with

other cosmologists.

Although all type Ia SNe have very similar peak intensities and photometric characteristics, there is some

deviation from the mean values. However, the brightness deviation is strongly correlated to the timescale

over which the event takes place. Measurement of the time for a given SN to reach its peak intensity and

decline again allows astronomers to calibrate measurements of the peak intensity luminosity (the star’s power

output) accordingly.

Scattering of light by dust in the interstellar medium (ISM) is wavelength dependant; the detected spectra

of SNe, as measured through ISM dust, are subsequently ”reddened”. This must also be taken into account

when calibrating apparent magnitude. The dispersion of peak magnitude values is ∼ 10− 12%, making type

Ia SNe consistent standard candles for cosmological measurement.

Quintessence is expansion with an as yet undetected, slow-varying Λ term. In theoretical descriptions, it is

associated with a vacuum energy density which exerts a large, negative pressure on the Universe, driving

expansion. The ratio of this exerted pressure to the density is represented by ω. In a quintessence model ω

is variable, while for the case of a ”cosmological constant”, ω = −1. A number of theoretical quintessence

models predict less negative values of ω than our current estimate, although the margin of error associated

with current measurements is very large. Perlmutter (1999) suggested employing a satellite based study of

type Ia SNe, to furthur redshifts ( z = 1.7) in order to obtain more accurate estimates of the cosmological

parameters. Such a study would reduce error in our calculation of ω to the order of 0.01, allowing a number

of quintessence models to be tested and possibly ruled out.
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Explain, in your own words, how slow-roll inflation can explain some of the problems with

the simple Big Bang model. What is the argument in favour of the Higgs particle being

associated with the inflaton?

Big Bang theories describe the expansion and cooling of the Universe; the ”bang” itself is treated as a

singularity. Inflationary Universe theory provides a mechanism by which the initial expansion could have

occurred.

The CMBR is observed to be homogeneous to one part in 105. From this we can conclude that the Universe

was at an effective thermal equilibrium at the epoch of decoupling, ∼ 3× 105 years after the big bang. This

poses a problem, as wee observe uniformity between points that are greater than a ”Hubble distance” from

one another; travelling at the speed of light, information could not have moved between these regions in

order for them to reach equilibrium. This shortcoming of the big bang theory is known as the ”Horizon

problem”.

Estimates of the current value of the density parameter (Ω0) provide a value 1 ±5%. An Ω0 of order unity

is an unstable equilibrium point; it necessitates that 1 second after the big bang, Ω would have to deviated

from 1 by less than 1× 10−15. If we extrapolate further, we can show that on the order of Planck time after

the big bang, Ω would have to have been within ∼ 2× 10−59 of 1.

Inflationary theory relies on the proposition a region of space came to be in a false vacuum, in which the

energy density is greater than that of a true vacuum, but cannot be rapidly lowered. When this region

eventually does relax to a true vacuum state, it will exert a negative pressure which will in turn exert a

repulsive gravitational field, driving inflation. In one traditional inflationary theory, the radius of this region

would have increased by a factor of 1025 in the inflationary process.

Prior to inflation, the region that became the Universe would have had sufficient time to reach thermal equi-

librium with itself; this uniformity was subsequently maintained under the inflationary process, providing

an explanation for the ”Horizon problem”.

A short rapid inflation would also drive k → 0, and therefore drive Ω→ 1. Hence an initial value of Ω ≈ 1,

as necessitated in a big bang model, could be provided.

Ellis and Uzan (2014) suggested Higgs particle would make a convenient candidate for the particle that

seeded this inflation. They argue that such a link would unify two seemingly distinct physical phenomena,

i.e., the inflationary mechanism that produced the big bang and the Higgs mechanism. In a Higgs inflation

model, there is only one free parameter to augment, the coupling of the Higgs particle to the curvature of

space (k). A small number of free parameters is an appealing feature of a model; it constrains the model’s

behaviour and makes it easy to test. While appealing in its simplicity, thus far there has been no evidence

to link these phenomena, making any discussion of Higgs inflationary models highly speculative.
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3 Question 3

Calculate the contribution of starlight to the radiation energy-density of the Universe, assum-

ing that there are 1011 galaxies in the Universe, each containing 1011 stars similar to our own

Sun, and that the photons are conserved.

In the question above, I shall consider ”Universe” to mean the observable region of space within the

horizon distance. This volume forms a sphere, whose volume given by

V =
4

3
π

(
c

H0

)3

. (27)

Note that the radius of this sphere is the maximum distance that light could have travelled since the beginning

of the Universe (the Hubble distance). The Hubble distance has been calculated to be ∼ 4300 Mpc. Using

the volume equation above and values provided in the question, I will calculate the number density of stars

in the Universe (N).

N =
1011 × 1011

V

= 1022
3

4

1

π
(4300)−3Mpc−3

= 3× 1010Mpc−3. (28)

Under the assumption that each of these stars is like our sun, we can suggest that they have the same

luminosity as our sun, L� = 3.839× 1026W .

Hence the total luminosity density of all stars is

N × L� = (3× 1010)(3.839× 1026) = 1.1517× 1037W Mpc−3. (29)

We can multiply the value obtained in equation 29 by the age of the Universe in order to estimate the energy

density of starlight in the Universe.

Note that the age of the Universe will be obtained from the present-epoch value of the Hubble parameter
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(H0), which was calculated by the Planck mission to be

H0 = 67.8km s−1Mpc−1 = 2.197× 10−18s−1. (30)

Our starlight energy density calculation also relies on the following approximations:

1. The number density of stars has remained the same over the lifetime of the Universe.

2. Each generation of stars has had the same mean luminosity.

3. Only a negligible amount of photons radiated by stars are subsequently destroyed (photons are con-

served).

εstarlight,0 = N × L� × t0 (31)

= N × L� ×
1

H0

= 1.1517× 1037 W Mpc−3 × 4.55× 1017s−1

= 5.264× 1054 J Mpc−3

= 1.792× 10−13 J m−3

≈ 1.1 MeV m−3 (32)

What fraction of the closure density is this?

The current value of the closure density ρc,0 is defined as

ρc,0 =
3

8πG
H2

0 . = 8.638× 10−27kg m−3. (33)

We can write the energy density of star light as an equivalent mass density through the relation E = mc2;

ρstarlight,0 =
εstarlight,0

c2
=

1.792× 10−13

(3× 108)2
= 1.99× 10−30kg m−3. (34)

Therefore the ratio of the mass-equivalent density of starlight to the critical mass density is given by

ρstarlight,0
ρc,0

=
1.99× 10−30

8.638× 10−27
= 2.31× 10−4. (35)
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The density of starlight represents less that 1 part in a thousand of the mass density necessary for a closed

Universe (neglecting the contributions of Λ and k).

4 Question 4

One non-Big Bang explanation for the CMB radiation is that it is due to “tired light” in which

the original photons lose energy on their journey towards us, but are otherwise unaffected.

Outline why this cannot be true.

The assertion of constancy of the speed of light is attributed to Einstein’s relativity and in order to con-

sider a variable light speed, a propagation medium must be introduced. No evidence for a suitable medium

has ever been found that would cause photons to lose energy in this way.

The tired light mechanism would rely on interactions between photons and the medium. Such interactions

would detract energy from the light (changing its wavelength), without altering its direction of propagation.

Such a scattering process is not observed in nature.

As part of their work with the Supernova Cosmology Project, Goldhaber et al. (2001) observed stretching

in B band light curves of type Ia SNe explosions. This is considered to me a direct observation of the effect

of relativistic time dilation. Such a stretching effect cannot be produced by tired light hypotheses and is

instead in good agreement with a ”homogeneous and isotropic expanding Universe”. This result allows tired

light mechanisms to be ruled out as cause for the observed redshift of distant galaxies.

Recalling that the Planck spectrum is given by:

Bν =
2hν3

c2
dν

exp(hν/kBT )
(36)

and assuming that the total number of photons is conserved under expansion, show that the

spectrum of the CMB remains blackbody (BB) in character under the transformation:

ν′ =
ν

1 + z
(37)
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Given relation 37, it is trivial to show

ν = ν′(1 + z),

∴
dν

dν′
= (1 + z), (38)

dν′ =
dν

1 + z
.

A similar relation can be derived between the temperature of the emitting blackbody (T ) and the apparent

temperature of the redshifted signal (T ′).

The radiation density of a blackbody is related to the scale factor by

ρRad ∝
1

a4
.

From thermodynamics, we know that

ρRad ∝ T 4
BB ,

∴ TBB ∝
1

a
, (39)

∴
T ′

T
=

1

a′
a

1
(40)

In the equations above a′ is the scale factor at the time of detection of the BB spectrum and a is the scale

factor at the time of emission of the radiation.

Note, if we impose the condition a′ = 1, a can be related to its redshift;

1

a
= z + 1 (41)

Therefore, equation 40 can be written in terms of redshift;

T ′

T
=

1

z + 1

∴ T ′ = T × 1

z + 1
(42)

The expression for the redshifted BB spectrum is

Bν′ =
2hν′3

c2
dν′

exp(hν′/kBT ′)
. (43)
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With substitution from equations 37, ?? and 42, we can rewrite equation 43 as follows:

Bν′ =
2h

c2

(
ν

1 + z

)3
dν

1 + z

1

exp
(
h
kB

1+z
T

ν
1+z

)
=

(
1

1 + z

)4

× 2hν3

c2
dν

exp( hν
kBT

)

=

(
1

1 + z

)4

×Bν . (44)

Note that this is simply equation 36 multiplied by a constant pre-factor. Therefore the blackbody emission

spectrum retains its shape under redshift.

5 Question 5

Recall the Friedmann equation:

(
ȧ

a

)2

= H2 =
8πG

3
ρ− kc2

a2
(45)

Using the chain rule, show that for a matter-only Universe with k ¿ 0 the following are

parametric solutions to the Friedmann equation, if θ is a variable that runs from 0 to 2 π:

a(θ) =
4πGρ0
3kc2

(1− cosθ) (46)

t(θ) =
4πGρ0

3(kc2)3/2
(θ − sinθ) (47)

First I will use the chain rule to demonstrate that

ȧ =
da

dt
=
da

dθ

dθ

dt
=
da

dθ

(
dt

dθ

)−1
. (48)

We can differentiate equations 46 and 47 with respect to θ to obtain the following:

da

dθ
=

4πGρ0
3kc2

sinθ

dt

dθ
=

4πGρ0
3(kc2)3/2

(1− cosθ)

(49)
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we can substitute these expressions into equation 48 to obtain expressions for ȧ and ȧ2;

ȧ =

(
4πGρ0
3kc2

sinθ

)
×

(
4πGρ0

3(kc2)3/2
(1− cosθ)

)−1
= (kc2)1/2 × sinθ

1− cosθ

∴ ȧ2 = kc2 × sin2θ

(1− cosθ)2
= kc2 × (1− cosθ)(1 + cosθ)

1− cosθ

∴ ȧ = kc2
1 + cosθ

1− cosθ
(50)

We are told in the question that solutions 46 and 47 should be tested for the case of a matter only Universe

(i.e. ρ = ρM , Θ = 0 and the medium’s pressure, p = 0). We are also told that the Universe has positive

curvature (k > 1).

For the case of a matter only Universe, we have shown previously (see equation 16) that ρ = ρ0/a
3. The

current value of the density parameter is given by

Ω0 =
8πG

3

ρ0
H2

0

; (51)

∴ ρ0 =
3

8πG
×H2

0 × Ω0 (52)

We can now use equations 16 and 52 to obtain an expression for ρ;

ρ =
1

a3
ρ0 =

1

a3
× 3

8πG
×H2

0 × Ω0. (53)

By substitution from equation 53 into equation 45, the Friedmann equation for our matter-only Universe

can be rearranged;

(
ȧ

a

)2

=
8πG

3

1

a3
× 3

8πG
×H2

0 × Ω0 −
kc2

a2

=
1

a3
×H2

0 × Ω0 −
kc2

a2

ȧ2 =
1

a
×H2

0 × Ω0 − kc2 (54)

Into the form of the Friedmann expression obtained in equation 54, I will substitute the expression for Ω0

from equation 51, and I will substitute an expression for a from the solutions we are trying to evaluate

(equation 46).
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The Friedmann equation becomes

ȧ2 =

(
4πGρ0
3kc2

(1− cosθ)
)−1

× 8πG

3

ρ0
H2

0

×H2
0 − kc2

= kc2
1

1− cosθ
× 2− 1

)
ȧ2 = kc2

(
1 + cosθ

1− cosθ

)
(55)

Equations 50 and 55 are equivalent. Therefore the solutions provided in equations 46 and 47 satisfy the

Friedmann equation for the scenario of a matter-only Universe with positive curvature.

Graph the variation of a vs. θ and t vs. θ and describe the behaviour of this Universe.

Graph a vs. t.

In order to obtain the plots required, I made the following estimations:

1. I used the number density of stars calculated in equation 28 in order to obtain a value for ρ0. By

multiplication of this value by the mass of our sun (1.99 × 1030 kg), I acquired a value of ρ0 ≈

2× 10−9 kg m−3.

2. I used a curvature of k = 1, corresponding to positive curvature and a closed Universe.

A plot of a vs. θ is provided in figure 1.

Figure 1: Evolution of the scale factor (a) as a function of the periodic variable θ.
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A plot of t vs. θ is provided in figure 2.

Figure 2: Evolution of time (t) as a function of the periodic variable θ.

This Universe is an unstable one. Friedmann realised that the formal solution to this equation in this

scenario corresponds to an oscillatory Universe, sinusoidally expanding and collapsing with time. The plot

of a vs. t (figure 3) provides some insight into this oscillation. The scale factor falls back to zero in a time-

frame comparable with Planck time. Qualitatively, we can choose to view this Universe as a manifestation

of a ”quantum foam” of matter cycling in and out of existence.

Figure 3: Evolution of the scale factor (a) as a function of time (t).
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