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Abstract

Robotic search and rescue is a challenging yet promising research area which
has significant real-world application potentials. In this paper, a survey of
multi-robot systems and how they can be implemented in search and rescue
operations is presented. In particular, the problems of task allocation,
communication, and human-robot interaction in multi-robot systems are
explored.

1 Introduction

Search and rescue (SAR) involves locating, rescuing, and medically stabilising victims
trapped in hazardous spaces. As such, SAR operations are of great importance in
disaster situations like earthquakes, hurricanes, tsunamis, or terrorist attacks. Rescue
workers have approximately 48 hours to find trapped survivors, otherwise the likelihood
of finding victims alive drops substantially [1]. Traditionally, such missions have been
performed by human teams, however, disaster environments have been known to be very
difficult to access by rescue workers due to potential presence of asbestos dust, poisonous
gases, hazardous materials, radiation, or extreme temperatures [2]. Robots on the other
hand can bypass the danger and expedite the search for victims immediately [1]. Thus,
rescue robots provide a promising solution to assist rescue workers in many aspects of
SAR operations.

For instance, rescue robots can reduce the chance of injury to workers and rescue dogs
by entering unstable structures, increase the speed of response, and through multiple
cameras and sensor fusion, extend the reach of rescue workers to regions that would
otherwise have been inaccessible [3]. In simple cases, a single tele-operated robotic so-
lution may be able to provide mission critical reconnaissance, but as the complexity of
the mission and environment increases, single robot solutions have many drawbacks. A
single robot solutions presents a single point of failure. If the robot becomes trapped,
damaged, or disabled, the mission is unable to be completed. Furthermore, as the num-
ber of capabilities of a robot increases, it’s cost and complexity also increase and can
become prohibitive to it’s design, production, and acquisition [4].

In order to address the limitations of single robot systems, research has been extended
to included multi-robotic systems (MRSs) into SAR tasks. The introduction of multiple
robots promises faster results and increased robustness through redundancy as each in-
dividual robot becomes dispensable. Moreover, limitations in individual robot payloads
can be addressed. In particular, it is more economical and easier to distribute the nec-
essary hardware for mission completion among multiple robots rather than integrate all
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necessary capabilities into a single robot [5]. MRS are more flexible and fault-tolerant
than single robots acting alone, and can succeed at tasks that are basically too complex
for a single robot to achieve because the single robot is spatially limited [6].

While promising, the integration of multiple robots into a rescue team is a challeng-
ing task. Apart from cooperation between human operators and each individual rescue
robot, robot coordination amongst the team is important too. Furthermore, task dis-
tribution amongst different rescue robots also needs to be defined so that the robots,
whether homogeneous or heterogeneous, can work effectively together within the context
of the team [3]. The remainder of this paper is organised as follows. Section 2 describes
the types of task allocation which are currently being researched for SAR purposes.
Section 3 explores the work that has been done with regards to MRS communication
for SAR missions. Section 4 investigates the progress that has been made in human-
robot interactions (HRI) with regards to MRS in SAR. Finally, Section 5 summarises
concluding remarks and future work.

Figure 1: Different types of robots used in SAR. The first image to the left showing
a single robot system, the second a heterogeneous MRS, and the third depicting a
homogeneous or swarm MRS.

2 Task Allocation

The basic objectives of multi-robot task allocation (MRTA) is to distribute M tasks to
N robots with the total costs minimised, while M and N are integers greater than or
equal to one [7]. Early research focused on centralised and homogeneous robot systems
but as MRSs increase in complexity with larger team sizes and greater heterogeneity of
robots and tasks, it is an NP-hard problem to find the global-optimal solution. More
recent work focuses on decentralised and heterogeneous robot systems, where various
kinds of algorithms have been proposed in order to extend the class of overall task per-
formance to the multi-assignment case. Some of these decentralised algorithms have
been developed by supplanting the centralised planner in order to remove the single
point of failure, as well as increase the mission range [8]. In SAR missions, one must
consider the real-time allocation of tasks between team members.

MRTA methods can be categorised into centralised, decentralised, and hybrid approaches.

In centralised MRS, a single agent is responsible for managing all the available resources,
determining and distributing tasks among the entire robot team. Decentralised methods
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do not need an agent and only involve local information and local communications [7].
Hybrid systems combine local control with higher-level control approaches to achieve
both robustness and the ability to influence the entire team’s actions through global
goals and plans [9]. Table 1 gives a summary of these classifications among several
algorithm types.

Table 1: Classification of several algorithms according to whether they are a Centralised,
Decentralised, or Hybrid task allocation approach.

Centralised Decentralised Hybrid

Fair Subdivision [10] | Distributed [13] | Consensus-based  [§]
Auction-Based Auction

Equilibrium TA [11] | VC TA [14] | Prim Allocation  [16]

Dynamic TA [12] | Learning Automata-  [15] | SET-MASR [17]

Based Probabilistic Task-Switching  [18]

S+T [19]

RDPSO [20]

2.1 Centralised Task Allocation

In [10], fair subdivision is used for subdividing and allocating a single global coverage
task between an underwater robot and a surface vehicle, deployed in an unstructured
environment to accomplish a search task. It deals with the heterogeneity of the robots
by letting the robots define a preference function over the task space according to it’s
sensing and motion capabilities. Another centralised approach, equilibrium task allo-
cation (TA), is used in [11] where robots are randomly assigned to search regions. If
more than one robot is assigned to a region, the region is divided among the robots
using a gradient-descent based method in order to equalise the time-loading between all
robots. Experiments were carried out at Boeing’s Vehicle Swarm Technology Lab using
two quadrotors and two tanks to complete search area coverage [3].

2.2 Decentralised Task Allocation

Decentralised approaches use multi-task selection instead of multi-task allocation be-
cause the agents or robots select the tasks instead of being assigned a task by a cen-
tralised planner or temporal agent. As such, decentralised algorithms are developed
using different approaches of conflict resolutions instead of using a temporal agent. This
allows for tasks to be selected asynchronously. In [13], each task has to be completed
within it’s assigned deadline to reach the almost optimal solution. In [14], vacancy
chains (VCs) are used to distribute resources among agents. A typical example is a
bureaucracy where the retirement of a senior employee creates a vacancy that is filled
by a less senior employee. This promotion, in turn, creates a second vacancy to be filled,
and so on [14]. In [15], the learning automata method tries to guide the choice of future
action by past responses.

2.3 Hybrid Task Allocation

Hybrid methods are essentially decentralised algorithms with a temporal agent such
as the consensus-based auction algorithm [8], the prim allocation algorithm [16], SET-
MASR algorithm [17], task-switching algorithm [18], etc. Most of them are what are
called auction-based allocation algorithms [7]. In auction-based algorithms, there are
two roles, the bidders and the auctioneer that are played dynamically among the robots,
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identifying the winner at each round and waiting for the new bids before starting the
next round. The auctioneer is the so-called “temporal agent” that is in charge of an-
nouncing the tasks and selecting the best bid from all the bids [7].

In [19], tasks can be executed by more than one robot using the S+T algorithm. The
basic idea behind the S+T algorithm is that a robot can ask others for services when
it cannot execute a task by itself. Thus, it is even possible to execute missions with a
task involving the whole team [7]. Robot swarms are considered in [20] with the use of
Robotic Darwinian Particle Swarm Optimisation (RDPSO). RSPDO allows for multi-
ple dynamic swarms. Hence enabling a distribute approach, because the network that
might have been comprised of the whole swarm of robots is divided into multiple smaller
networks (one for each swarm). This makes it possible to decrease the number of robots
and the information exchanged between robots on the same network. Making RDPSO
scalable to large populations of robots [20].

3 Communication

Communication can enhance the performance of MRS from several aspects [21]. It can
allow robots to share position information, the state of the environment, and sensor
data with others in the system. It also works in favour of individual robots enabling
them to acquire information as to the intentions, goals, and actions of other robots [22].
This information can be obtained in a number of different ways. The two most common
techniques are explicit and implicit. Explicit communication is where robots directly
and intentionally communicate relevant information through some active means, such
as radio. Implicit communication, called stigmergy, is where robots sense the effects
of team-mate’s actions through their effects on the world. It is also when robots use
sensors to directly observe the actions of their team-mates [9]. Table 1 classifies different
communication approaches used in cited papers based on whether they are explicitly or
implicitly applied.

Table 2: Classification of communication approaches used in cited papers based on
whether they are explicitly or implicitly applied.

Explicit Implicit
Behaviour-Based [23] | Virtual Pheromone [32]
Principled [24] | Ant Inspired [35]
Ad-hoc Wireless [25] | Bee Inspired [38]
Robot Maintained [26] | Sharing Search Info. [33]
Ad-hoc Newtork Approximation Algorithm [34]
Limited Communication [27] [28] [29] | Active Environment [37] [36] [39]
Wireless Constraints [30]

Overcome Local Minima [31]

3.1 Explicit Communication

Existing coordination methods are mainly based on the use of explicit communication
[22]. In [23], a behaviour-based formation control strategy for multi-robot teams is
presented. In order to communicate with the formation’s unit-center, each robot com-
municates it’s position to the other over a wireless network. A principled approach is
taken by [24] where a general framework of inter-robot communication for dynamic task
allocation is presented in terms of cooperative mobile robots. Wang et al [25] demon-
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strate an ad-hoc robot wireless communication scheme for a large system with many
mobile robots to exchange information. This is extended in [26] where an algorithm is
developed that enables a group of cooperating mobile robots to establish and maintain
a wireless ad-hoc network to exchange task-related data. Which could help to increase
the mission range in SAR environments.

In [27], the authors aim to reduce repeat coverage, defined as any robot covering pre-
viously covered space, in an unknown setting. They exam the problem of multi-robot
coverage path planning for a team of robots with limited communication, where robots
operate under the restriction that communication between two robots is only available
when they are within the line of sight of each other. Limited communication approaches
are also examined by [29] and [28], where [28] looks at the problem of navigation of
dynamically communicating robots where there is a bidirectional interaction between
the robot network and continuous states. In this case, it was found that employing a
mixture of deterministic and game-theoretic approaches yielded best task completion
percentages.

An approach for multi-robot exploration that takes into account the constraints of wire-
less networking is demonstrated in [30]. A communicative exploration which takes into
account the limited constraints of the transceivers is implemented. An algorithm is
introduced based on a population that samples the possible moves of all robots and a
utility function is used to select the best one in each time step. Explicit communica-
tion is even used to overcome the problem of local minima, particularly prevalent in
homogeneous robot systems dependent on behavioural inspired coordination. In [31], a
composition of gradient descent and potential fields is used to guide robots to the target
while avoiding obstacles. To overcome local minima, a distribution coordination mech-
anism was developed based on mode switching that reallocates some robots as rescuers
and sends them to help the robots that may be trapped.

Figure 2: Group of Emulab wireless networking robots [60].
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3.2 Implicit Communication

Implicit communication can be divided into active implicit communication and pas-
sive implicit communication. Active refers to the fact that robots can communicate by
collecting the remaining information of others in the environment. The use of this is
typically related to the field of biomimetrics, and is usually inspired by the collective
behaviour of bees and ants. Passive refers to the fact that the robots can also communi-
cate by perceiving a change in the environment through the use of sensors. For instance,
the necessity of a robot to compute the context information, such as the position and
attitude of others by modelling and reasoning based on the perceived data in order to
cooperate with them.

In [32], a virtual pheromone was proposed for coordinating the actions of a robot swarm
to facilitate quick survivor localisation in SAR scenes. In the proposed approach, a
swarm of mini-robots can be deployed in a building. Upon detecting a survivor, a robot
emits a message signalling the discovery, which is relayed locally between neighbour-
ing robots. The message propagates along unobstructed paths, producing a “virtual
pheromone” gradient, which can guide human rescuers or larger victim manipulating
robots to a survivor [3]. In [35], two ant-inspired algorithms for robot foraging: VP
and cardinality. Essentially, stigmergy is used as a message protocol, measuring the
performance of the swarm in dynamic obstacle environments. Furthermore, the authors
of [38], implement the necrophoric behaviour of bees as a way to give the robots of the
swarm the capability of recognising and rescuing a disabled robot.

Implicit cooperation is also enabled through the sharing of search progress information
[33], using an approximate algorithm for multi-robot path-planning [34], and through
the robots’ perception of their surroundings [37], enabling robots to make decisions
through stigmergy. In [36], the authors use a swarm of robots for checking emergency
infrastructure in order to anticipate the restoration of this infrastructure as well as the
community functions. They propose that a decision support system can receive feed-
back of a swarm of robots specialised in inspecting infrastructure in a disaster scenario
using stigemergy. In [39], a swarm of robots serves as guidance to human fire-fighters in
large critical scenarios where visibility is poor due to the smoke. The purpose is to give
support when the navigation of the human being is compromised to some degree.

3.3 Hybrid Communication

Selecting the appropriate use of communication in a MRS is a design choice dependent
upon the tasks to be achieved by the MRS. The challenge in MRSs is to discover the
“optimal” pieces of information to exchange that yield these performance improvements
without saturating the communications bandwidth [9]. The use of explicit communica-
tion can ensure the accuracy of the exchange of information between robots. However,
the communication load of a system will increase as the number of robots increases. This
may cause a decrease in system performance or else lead to an overall system failure
in extreme cases. In using implicit communication, although the information obtained
by a robot is not completely reliable, the stability, reliability and fault tolerance of the
whole MRS are better than in using an explicit pattern. Thus, applying both explicit
and implicit methods in practice can make the two methods complement each other [22].
Hybrid communication approaches have been implemented in [40], [41], [21], and [42].

In [40], experiments were conducted at the McKenna Military Operation on Urban Ter-
rain site, where a team of aerial and ground robots was deployed to patrol an urban
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village and search for and localise human targets. A hybrid framework for a single opera-
tor to deploy the team of heterogeneous robots was presented. The robots autonomously
deployed themselves to search for a target of interest after receiving a universal com-
mence signal from the base station. Local controllers implemented on each robotic
sensor platform were used to direct the robots as well as their sensors according to a
mutual information gradient approach, allowing individual robots to drive in directions
that maximise their information gain locally. Aerial robots conducted an initial coarse
search of the region, determined potential target locations and generated maps that were
used to design navigation controllers an plan missions for the team. The UGVs were
deployed to conduct a more localised search and identify the targets on the basis of the
aerial robots’ initial assessment [3].

4 Human-Robot Interaction

The HRI problem can be defined as understanding and shaping the interactions between
one or more humans and one or more robots. Interactions between humans and robots
are inherently present in all of robotics, including autonomous robots. Humans can play
a variety of roles while participating in given tasks with MRS [43]. Such roles include:
Planning and instructing the MRS to perform a task in a particular manner. Monitoring
the MRS’s implementation of given instructions. Intervening, when necessary, to adjust
or correct robots. Learning from the performance and outcomes of the MRS in order to
improve planning for future interactions [44].

In SAR, teamwork is essential. However, the integration of multiple robots and humans
into a rescue team is a challenging task. Regarded as one of the major bottle-necks in
rescue robotics [45]. One of the main considerations in devising a team is to determine
the ratio of human operators to robots [3]. How many remote robots can a single human
manage? In general, the answer is dependent on factors such as the level of autonomy
(LOA) of the robots, the task at hand, and the available modes of communication [46].
More autonomy in robots means that the human managing the robot may have avail-
able free time. Free time which could be used to manage multiple robots [47]. Figure 1
illustrates levels of autonomy with emphasis on human interaction.
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Figure 3: Levels of autonomy with emphasis on human interaction [52].

4.1 Human-Robot Teams

A key factor in constructing human-robot teams is the ratio of robots to humans and
visa-versa. The effects of the number of robots controlled by an operator on the per-
formance of a SAR task were investigated in simulations with 4 to 12 simulated UGVs
in [48]. Participants were asked to search for victims while controlling varying numbers
of robots. The results showed that task performance increased when going from 4 to
8 robots but decreased when going from 8 to 12 robots. The human-robot ration was
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also investigated in [49] within the context of the RoboCup Rescue Real Robot League!.
It was found that the success rate of cooperative tasks increased when the number of
robots to be controlled was increased. An operator made faster decisions with less hes-
itation while controlling more than one robot.

The above scenarios refer to single-human multiple-robot cooperation tasks. In [50],
the challenge of controlling multiple robots with multiple humans was investigated.
Twenty-four simulated mobile robots were used to explore and search for victims in a
large SAR virtual environment. The group of robots was controlled by teams of two
people, in either a joint control capacity or an assigned (twelve robots each) control ap-
proach. It was found that there was a substantial advantage for autonomous exploration
over manual exploration in joint/shared control, whilst the difference was negligible in
the assigned case [50]. Indicating that the level of autonomy required by robots in a
MRS is dependent on the number of human operators involved.

In addition to teams with human operators and robots, there has also been some work
that has focused on devising teams where human rescue workers work in a peer-to-peer
fashion with robots. In [51], the problem of jointly performing RFID-based? SLAM
by robots and fire-fighters was explored. Human poses were tracked by analysing ac-
celeration patterns to determine footsteps, and robot poses were tracked using wheel
odometry and IMU data. Then both the humans and robots estimated the distances
between RFID tags by pose tracking and this information was sent to a central station,
where a joint global graph was constructed. Human-robot team experiments conducted
on the campus of the University of Freiburg showed that information sharing between
humans and robots allows for the correction of their individual paths globally [51].

4.2 Information Exchange

A second component which is important in HRI is the manner in which information
is exchanged between humans and robots. Measures of the efficiency of an interaction
include the interaction time required for an intent and/or instructions to be commu-
nicated to the robot [47], the cognitive or mental workload of an interaction [54], the
amount of situational awareness (SA) produced by the interaction [55], and the amount
of shared understanding between humans and robots [56] [57]. Information exchange in
HRI can happen through an array of mediums, the primary forms being seeing, hearing,
and touch which manifest in HRI as follows:

e Visual displays, typically presented as graphical user interfaces or augmented re-
ality interfaces [58] [53].

e Gestures, including hand and facial movements and by movement-based signalling
of intent [53].

e Sounds for alerting.

e Speech and natural language, which include both auditory speech and text-based
responses [59].

e Physical interaction and haptics, frequently used remotely in augmented reality
or in tele-operation to invoke a sense of presence especially in tele-manipulation
tasks.

The RoboCup Rescue Robot League is an international competition for urban search and rescue
robots, in which robots compete to find victims in a simulated earthquake environment.
2RFID is radio-frequency identification.
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Many human-robot interfaces for mobile robots are often hard to use, confusing, and
suffer from both information overload and poor situational awareness. In [58], a human-
robot interface for the tele-operated SAR research robot, CASTER, is presented. Ex-
periments conducted evaluated the designed interface as quick to learn, easy to use, and
effective. In [53], a novel interface Pose and Paste (P%P) was conceived to facilitate
interaction between a single user and a number of robots equipped with cameras. The
user of the (P&P) interface is able to cycle through the visual perspective of each robot,
acquire control of a robot, and map the user’s body movements into robot motion. In ex-
periments, operators at MIT in the USA successfully controlled two aerial robots flying
in a lab at DLR in Germany.

5 Conclusions

In this paper, a search and rescue focused survey of task allocation, communication, and
human-robot interaction methodologies in multi-robot systems has been presented. The
main conclusions drawn from this review are as follows.

In SAR missions time is of the essence, thus, in [13], each task has to be completed
within it’s assigned deadline. Time constraints in TA can be beneficial to SAR where
robots need to move objects from one place to another so that the paths become us-
able by other robots that have to reach potential victims. In such cases, there may be
a deadline for the robots to clear paths because victims should be found and reached
within some time [13]. In [15], the learning automata TA method tries to guide the
choice of future action by past responses. As such, this algorithm can be applied to a
broad range of modelling and control problems without the complete knowledge of the
environment [7]. The S+T algorithm [19], could be used in scenarios where transmitting
images in real-time could require another robot to act as a communication relay. If a
robot cannot execute a task by itself, it asks for help. Other possible scenarios, where
this approach is useful, is in the box-pushing problem [19]. Future SAR robotics could
use this for developing robots that can help manoeuvre and transport trapped victims
out of the rubble [9].

With regards to robot coordination, researchers generally agree that communication
can have a strong positive impact on the performance of a robot team. However, more
information does not necessarily continue to improve performance, as it can quickly
overload the communications bandwidth without providing an application benefit. The
challenge in MRSs is to discover the “optimal” pieces of information to exchange that
yield these performance improvements without saturating the communications band-
width [9]. So far a mixture of explicit and implicit methods have been demonstrated
in SAR experiments each demonstrating strengths in different areas. Explicit can en-
sure accuracy but does not scale well, unlike implicit, when more robots are introduced.
Thus, hybrid methods, applying both explicit and implicit communication, appear to
best approach in practice that should be further researched in the context of MRS in
SAR [22].

Finally, a lot more progress needs to be made in the way of HRI with respect to MRS
in SAR tasks. At the moment, the current level of autonomy in robots allows a single
human operator to effectively control approximately 8 robots in SAR simulations [48].
However, in most real world SAR missions the ration of human to robots is in fact 2:1
[45]. Future improvements in SAR robot infrastructure and communication interfaces
need to focus on correcting this. Human-robot communication interfaces in particular
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requiring a lot of attention. Multi-agent software exists [61] but it needs to be adapted
for the SAR task. The user should be able to give high level commands to a team of
robots and the robots should be able to plan and coordinate their task. Unfortunately,
unfamiliar and unstructured environments, unreliable communications and many sen-
sors combine to make the job of a human operator, and hence the job of the interface
designer, challenging. However, the work of [58] and [53] have proved this to not be
impossible.
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