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Abstract

A thin piece of gold foil is bombarded with alpha particles using an americium-241
source at several angles. The resulting scattering of the alpha particles is examined
by finding the count rate at the angles. It was found that most of the particles were
unscattered while a minority were scattered. It is predicted by Rutherford’s model
that the count rate is proportional to cosec4 of the angle and this relationship was
verified. This disproves the plum-pudding model and supports Rutherford’s theory.

? Introduction

The idea of the atom has been around for millenia yet little could be said about it. By the end of the
19th Century, it became apparent that atoms were a useful tool that could be used to model phenomena
in physics and chemistry. J. J. Thomson proposed the plum pudding model in 1904 where the atom is
a mass of positive charge with small negatively charged electrons embedded in it like plums in a plum
pudding.

In 1909, Ernest Rutherford directed the famous experiment where a thin sheet of gold foil was bom-
barded with alpha particles. The plum pudding model predicted that the alpha particles would be
scattered by the gold atoms by small angles. However, it was found that most of the alpha particles
passed straight through the gold foil with little scattering and a very small amount of the alpha particles
were scattered by some large angle and some were even backscattered.

The only explanation Rutherford had was that the plum pudding model could not be right. He
proposed his own model where the atom is mostly empty space with a dense concentration of positive
charge at the centre orbited by electrons. With this model, Rutherford derived the differential scattering
cross section which corresponded with the experiment.

Differential Scattering Cross Section

Let dN be the number of particles scattered per unit time through angles between θ and θ + dθ where
θ is the scattering angle. Let n be the number of particles passing in unit time through unit area of the
alpha-particle beam cross section. Then the effective scattering cross section dσ is defined as,

dσ =
dN

n
(1)

The impact parameter, ρ, is a function of the scattering angle. Therefore, the particles that are scattered
through θ and θ+ dθ lie between ρ(θ) and ρ(θ) + ρ(dθ). The number of particles that are passing are the
particles that pass through the annulus of thickness dρ and radius ρ so dN = 2πρ dρ . n = dA . n.

⇒ dσ = 2πρ dρ
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In order to find the dependence of dσ on the angle of scattering, rewrite the equation to get,

dσ = 2πρ(θ)

∣∣∣∣dρ(θ)

dθ

∣∣∣∣dθ (2)

The modulus is because the derivative may be negative. The solid angle element(which is the surface
area subtended by a surface onto a sphere), dΩ, between cones with vertical angles θ and θ + dθ is
dΩ = 2π sin θ dθ. This gives,

dσ =
ρ(θ)

sin θ

∣∣∣∣dρdθ
∣∣∣∣dΩ (3)

dσ
dΩ is referred to as the differential scattering cross-section. Rutherford derived from his model,

ρ2 = (
α2

m2v4
∞

) cot2 1

2
θ

where α is a constant related to the Coulomb field, m is the mass of the alpha particle and v∞ is the
velocity of the alpha particle at infinity. Substituting this into Equation (3) gives,

dσ = (
α

2mv2
∞

)2dΩ cosec4 θ

2

Recalling that dN is defined as the number of particles scattered per unit time, this is simply equal to
the count rate R. So dσ = R

n giving,

R ∝ cosec4 θ

2

⇒ logR ∝ log cosec4 θ

2
(4)

⇒ logR ∝ 4 log cosec
θ

2
(5)

ie, logR = log kcosec4 θ
2 = 1 log cosec4 θ

2 + log k and a similar result for equation (5).

? Experimental Method
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Figure 1: Apparatus of Experiment

The apparatus is set up as shown in figure 1. A discriminator is hooked up to filter out background
noise. A 1mm collimating slit was used with the gold foil. The foil must be thin because if it is too
thick, the alpha particles would not be able to penetrate the foil. It is placed in the chamber along with
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the alpha-particle source of 0.3 MBq(compared to Rutherford’s experiment of 4GBq, this is about 10,000
times bigger). The pump is turned on until the pressure inside is ≈1mbar. This is done so that the alpha
particles do not get scattered by air molecules due to the alpha particles low penetration power.

The detector detects counts of the alpha-particles, N, which are found for angles from 0◦ to ±50◦ for
some period of time, t, to find the count rate. To speed up the process, a 5mm slit was replaced at ±30◦.
The count rate was measured at ±30◦ for both the 1mm and 5mm slit to find a conversion factor between
the slits to be applied to counts found with the 5mm slit.

? Results and Analysis

Figure 2: Graph of Count Rate vs Scattering Angle with cosec4 normalised to the data

Figure 2 shows the count rate against the scattering angle. This clearly shows the relationship of R
with cosec4θ. Although it is hard to tell from the graph, the points further away from 0 are small but
nonzero as predicted by the cosec function. The relationship breaks down near 0 since cosec approaches
infinity as it tends towards 0 and an infinite count rate is impossible.

However, using logarithmic plots will show the linear relationship between R and cosec4 instantly
by equations (4), (5). Figure 3 shows a linear relationship between log count rate and log cosec4. The
slope of the graph is 0.94 ± 0.01 while theory predicts it to be 1. Figure 4 shows a linear relationship
between log count rate and log cosec. Note that there are less points than in the previous figure because
cosec can return a negative number and logarithms are not defined. The slope of the graph is 3.24± 0.01
while theory predicts it to be 4. While these do not exactly agree with theory, note the huge error in the
last 2 points which has skewed the line when fitting has been applied. The results are not too far from
being right taking into account the experimental error.
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Figure 3: Graph of log Count Rate vs log cosec4 θ
2 — y = (0.94± 0.01)− (4.16± 0.01)

Figure 4: Graph of log Count Rate vs logcosec θ2 — y = (3.24± 0.01)x− (3.98± 0.01)
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Errors

∆N =
√
N

∆R = R

√
(
∆N

N
)2 + (

∆t

t
)2

∆ logR =
∆R

R
Using Wolfram Mathematica,

∆ log cosec4 θ

2
= 2

cot θ2
ln 10

∆θ

∆ log cosec
θ

2
= 1/2

cot θ2
ln 10

∆θ

? Conclusion

Rutherford’s theory was verified. It has been shown that there is a relationship between the count rate
and the scattering angle and this can only be explained using Rutherford’s model. Although the results
did not exactly correspond to the predictions, this may have been due to time constraints. If more time
was available, the count rates could be found more accurately reducing the error significantly. The error
on the count rate can be seen quite clearly in figures 3 and 4.

When Rutherford first verified his theory, he was known to have said:

“It was almost as if you fired a 15 inch shell into a piece of tissue paper and it came back and
hit you.”

Although we did not produce the most accurate results, we surely felt some of Rutherford’s sentiments
when performing the experiment.
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