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Abstract

The trajectory of a linear pendulum is found using the trapezoid algorithm for
several initial conditions. The trajectory is then found for the non-linear case
so that a comparison can be made. The Runge-Kutta method is then used on

the non-linear pendulum and the two algorithms are compared with the
Runge-Kutta method showing better accuracy. The damped pendulum is then

examined using the Runge-Kutta method. Finally, the trajectory of the
damped driven pendulum is found with different driving amplitudes and the
phase portrait is plotted. It was found that with increasing amplitude, the

trajectory became more complex and eventually reached the chaotic regime.

? Introduction

The equation of motion for the simple pendulum with length l under gravity is

θ̈ +
g

l
sinθ = 0

This does not have an analytic solution. If we restrict the motion to small angles, ie θ << 1,
then sin θ ≈ θ. This gives,

θ̈ +
g

l
θ = 0

This is a linear second order differential equation with solution θ = A cos(βt+φ0) where β2 = g
l .

However, this is merely a simplification and in reality, we need to be able to deal with non-linear
motion. The simple pendulum is generalised by the non-linear damped driven pendulum which
has equation of motion,

θ̈ + kθ̇ + β2 sin θ = A cos(Ωt)

This can be solved numerically.

Simple Euler Method

Firstly, the second order differential equation is converted to a pair of first order differential
equations by the substitution dθ

dt = ω. This gives,

dθ

dt
= ω
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dω

dt
= −β2 sin θ − kω +A cos(Ωt) = f(θ, ω, t)

Taking the Taylor expansion about intial time t,

θ(t+ ∆t) = θ(t) + θ̇(t)∆t+O(∆t2)

ω(t+ ∆t) = θ(t) + ω̇(t)∆t+O(∆t2)

For small time increments, we can neglect the higher order terms. Writing this as an iteration,

θn+1 = θn + ωn∆t

ωn+1 = ωn − θn∆t

Hence, if we know the initial conditions at time t, we can work out the trajectory. The problem
with this is that there is a high amount of inaccuracy.

Trapezoid Rule

The trapezoid rule refines the simple Euler method and improves the accuracy. The trapezoid
rule approximates the area under a curve as a trapezoid. This can be expressed as,

θn+1 − θn =

∫ t+∆t

t

dθ

dt
dt ≈ ∆t

2

(
dθ(t)

dt
+
dθ(t+ ∆t)

dt

)

⇒ θn+1 = θn +
∆t

2
(ωn + ωn+1)

Taylor expanding the second term and neglecting second order terms gives,

θn+1 = θn +
∆t

2
(ωn + ∆t(ωn + f(θn, ωn, t)))

This can be written as,

θn+1 = θn +
k1a + k2a

2

where k1a = ωn∆t and k2a = (ωn + f(θn, ωn, t)∆t)∆t. Similarly,

ωn+1 = ωn +
k1b + k2a

2

where k1b = f(θn, ωn, t)∆t and k2b = f(θn+1, ωn + k1b, tn+1)∆t.

Runge Kutta Method

The trapezoid rule is mostly sufficient when solving the non-linear pendulum. To solve the
damped driven pendulum, it is required to use the Runge-Kutta method to improve the accuracy.
The Runge-Kutta Method is a similar iterative method with,

θ(t+ h) = θ(t) +
1

6
(k1a + 2k2a + 2k3a + k4a)
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ω(t+ h) = ω(t) +
1

6
(k1b + 2k2b + 2k3b + k4b)

where
k1a = hω k1b = hf(θ, ω, t)

k2a = h(ω +
k1b

2
) k2b = hf(θ +

k1a

2
, ω +

k1b

2
, t+

h

2
)

k3a = h(ω +
k2b

2
) k3b = hf(θ +

k2a

2
, ω +

k2b

2
, t+

h

2
)

k4a = h(ω + k3b) k4b = hf(θ + k3a, ω + k3b, t+ h)

? Experimental Method

Linear Pendulum

The trapezoid rule is used to solve the linear pendulum. β2 is set to 1. ∆t is set as 0.1 and 100
steps are taken. Initial values are taken to be θ(0) = 0, ω(0) = 1. Other initial conditions taken
are θ(0) = 0.2, 1.0, 3.124 with ω(0) = 0 for all cases.

Non-Linear Pendulum

The same procedure is done for the non-linear case with the same initial conditions. The results
are then compared.

The Runge Kutta method is then implemented with the same initial conditions and the
results of the trapezoid rule and Runge Kutta are compared.

Damped Pendulum

k is set as 0.5. The number of steps is now 500. The same initial conditions are used again for
the nonlinear and linear case such that a comparison can be made.

Damped Driven Pendulum

k is set as 0.5 and Ω is set as 0.6667. The number of steps is increased to 10000. θ is re-
stricted to [−π, π] since the pendulum can overshoot. The program is then run for values
A = 0.9, 1.07, 1.35, 1.47, 1.5 with the intial conditions θ(0) = −2 and ω(0) = 0. An if state-
ment is implemented to discard the first 500 points so that the trajectory settles down and the
phase portrait of the trajectory is then plotted.
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? Results and Analysis

Linear Pendulum

(a) θ = 0 ω = 1 (b) θ = 0.2 ω = 0

(c) θ = 1 ω = 0 (d) θ = 3.124 ω = 0

Figure 1: Linear Pendulum with position in red and velocity in green

Figure 1 shows the motion for the linear pendulum. As expected, it undergoes simple har-
monic motion. The velocity reaches a maximum when the position is at 0 and vice versa.
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Non-Linear Pendulum

(a) θ = 0 ω = 1 (b) θ = 0.2 ω = 0

(c) θ = 1 ω = 0

(d) θ = 3.124 ω = 0
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(e) θ = 3.124 ω = 0 with 2000 steps

Figure 2: Comparison between Linear(red) and Non-Linear(green) Pendulum
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Clearly, from (b), the linear pendulum is a good approximation for small angles. However,
it is clear that when the angle is big, the linear pendulum no longer describes what happens in
reality accurately. This is most evident in (d) where the pendulum is at the very top and the
angle is significantly large. The two graphs look completely different. Another thing to note
is in (e) where the pendulum is actually rotating instead of oscillating. This shows the errors
emerging from the algorithm since by the conservation of energy, the pendulum should not have
enough energy to overshoot and rotate. It is clear from this that the algorithm is not sufficient
to predict the motion when the angle is large for this time increment.

Non-Linear Pendulum: Trapezoid Method vs Runge-Kutta

(a) θ = 0 ω = 1 (b) θ = 0.2 ω = 0

(c) θ = 1 ω = 0
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(d) θ = 3.124 ω = 0

Figure 3: Comparison between Trapezoid Method(red) and Runge-Kutta(green)

Figure 3 shows the difference between the trapezoid method and the Runge-Kutta method.
Although it is slightly different, it is apparent that the trapezoid method is a sufficient method in
determining the motion of the non-linear pendulum. Figure 2 showed the errors in the trapezoid
method manifesting but the Runge-Kutta method is able to correctly predict that the pendulum
will oscillate in Figure 3(d). This shows that the Runge-Kutta method is more accurate when
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using the same time increment but the trapezoid method is still mostly sufficient.

Damped Pendulum

(a) θ = 3.124 ω = 0

Figure 4: Damped Linear(red) and Non-Linear(green) Pendulum

Figure 4 shows the damped linear and damped non-linear pendulum. A comparison shows
that the linear case becomes very good after a sufficiently long time. This is because the am-
plitude of oscillation decreases and eventually, the small angle limit is reached so the linear and
non-linear cases coincide. The amplitude will reach 0 as t→∞.
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Damped Driven Pendulum

(a) A = 0.9 (b) A = 1.07

(c) A = 1.35 (d) A = 1.47

(e) A = 1.5

Figure 5: Phase Portraits of Damped Driven Pendulum
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Figure 5 shows the phase portraits of the damped driven pendulum with different driving
amplitudes. (a) shows the pendulum has settled into a periodic oscillation. This is a good
example of a limit cycle. (b) shows period doubling. The motion is still periodic but it will
switch periods as it oscillates. As A increases, the motion becomes more complex. Although the
motion is more complicated, (c) and (d) seem to be following fixed paths. (e) quite clearly shows
the chaotic regime. The motion is extremely complex and there is no periodic behaviour.

? Conclusion

For small angle displacement, the linear pendulum is a good approximation of the pendulum.
However, it quickly breaks down when the angle is larger than 1. The trapezoid method is a
powerful algorithm in determining the trajectory of the linear pendulum. Unfortunately, it is
not sufficient for larger angles and the Runge-Kutta method is more accurate. The damped
pendulum showed once again that the linear model is good for small angles.

The phase portraits of the damped driven pendulum were good examples of chaos emerging
from a somewhat simple system. With increasing driving amplitude, the motion became more
complex and eventually became chaotic.
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