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The same questions seem to come up all the time in geometry. Here are solutions to some of the
most common ones. I have listed what has come up in the past years up to 2006. At the moment, this
is for the schols paper but I might update this to the whole exam when schols is over. If you spot any

mistakes, please tell me in person or by e-mail.

1 Chain Rule(2010,2008,2007)

State and prove the chain rule for functions on finite-dimensional real vector spaces.

Let U, V, W be open subsets of finite-dimensional real normed spaces M, N, L respectively. Let the function
g : U → N be differentiable at a ∈ U and let f : V → L be differentiable at g(a). Then f ◦ g is differentiable
at a and is equal to f ′(g(a))g′(a).

We want to find f ◦ g(a+ h). By assumption,

g(a+ h) = g(a) + g′(a)h+ φ(h)

where ‖φ(h)‖‖h‖ → 0 as ‖h‖ → 0 since g is differentiable and

f(g(a) + y) = f(g(a)) + f ′(g(a))y + ψ(y)

where ‖ψ(y)‖‖y‖ → 0 as ‖y‖ → 0 since f is differentiable. Let y = g′(a)h+ φ(h).

f(g(a) + g′(a)h+ φ(h)) = f(g(a) + f ′(g(a)[g′(a)h+ φ(h)] + ‖y‖θ(y)

with θ(y) =

{
ψ(y)
‖y‖ if y 6= 0

0 if y = 0

This needs to be done in case y = 0. Then

f(g(a+ h)) = f(g(a)) + f ′(g(a))g′(a)h︸ ︷︷ ︸
linear operator

+ f ′(g(a))φ(h) + ‖y‖θ(y)︸ ︷︷ ︸
remainder term

Now we need to show that the remainder term divided by ‖h‖ tends to 0 when ‖h‖ tends to 0.

‖f ′(g(a))φ(h) + ‖y‖θ(y)‖
‖h‖

≤ ‖f
′g(a)‖‖φ(h)‖
‖h‖

+
‖y‖‖θ(y)‖
‖h‖

But we have:

y = g′(a)h+ φ(h)

‖y‖ ≤ ‖g′(a)‖‖h‖+ ‖φ(h)‖
‖y‖
‖h‖
≤ ‖g′(a)‖+

‖φ(h)‖
‖h‖
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so ‖y‖ tends to 0 as ‖h‖ tends to 0 and ‖y‖‖h‖ is bounded. Therefore ‖f
′g(a)‖‖φ(h)‖
‖h‖ + ‖y‖‖θ(y)‖

‖h‖ tends to 0 when

‖h‖ tends to 0. Thus the remainder term tends to 0 so f ◦ g is differentiable and is equal to f ′(g(a))g′(a).

�

2 Chain Rule Applications(2010,2009)

These questions go something like this: Let f : R2 → R be the function

f(x, y) =
xy2

x2 + y3

if (x, y) 6= (0, 0) and f(0, 0) = 0. Calculate ∂f
∂x and ∂f

∂y at (0,0) and d
dtf(ta, tb) at t = 0. Show that f is not

differentiable at (0, 0)

The first thing to do is assume f is differentiable at (0, 0). f is 0 at all points along the x and y axes.
By evaluating the partial derivatives along the x and y axis, ∂f

∂x (x, 0) and ∂f
∂y (0, y) are zero. More impor-

tantly, setting x, y = 0 gives ∂f
∂x (0, 0) = ∂f

∂y (0, 0) = 0 From the chain rule, we also know that

d

dt
f(ta, tb)

∣∣∣∣
t=0

=
∂f

∂x
(0, 0)a+

∂f

∂y
(0, 0)b

But this is 0 from the previous result. If we assume f is differentiable at (0, 0), then this limit exists:

d

dt
f(ta, tb)

∣∣∣∣
t=0

= lim
t→0

f(ta, tb)− f(0, 0)

t

= lim
t→0

t3ab2

t(t2a2 + t3b3)

= lim
t→0

t3ab2

t3(a2 + tb3)

=
b2

a

which is a contradiction.

3 Eigenfunctions(2008,2006)

A C1 function is homogenous of degree r if:

F (tx1, . . . , txn) = trF (x1, . . . , xn)

Show that F is an eigenfunction of the operator:

x1
∂

∂x1
+ . . . xn

∂

∂xn

LHS:

d

dt
F (tx1, . . . , txn) =

∂F

∂x1
dtx1
dt

+ · · ·+ ∂F

∂xn
dtxn
dt

=
∂F

∂x1
x1 + · · ·+ ∂F

∂xn
xn be aware of where F is evaluated at
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RHS:

d

dt
trF (x1, . . . , xn) = rtr−1F (x1, . . . , xn)

⇒ ∂F

∂x1
x1 + · · ·+ ∂F

∂xn
xn = rtr−1F (x1, . . . , xn)

This is true for all t. Set t = 1.

(
∂

∂x1
x1 + · · ·+ ∂

∂xn
xn)F = rF

Note again where F is evaluated at. This completes the question and the eigenvalue is r.

4 Matrix Derivative(2009,2007)

Let V be the space of non-singular matrices. Let f : Rn×n ⊃ V → Rn×n where f(A) = A−1. Show it is
differentiable and find the derivative.

Suppose:
f(A+H) = f(A) + f ′(A)H + φ(H)

Then to find φ(H):

(A+H)−1 −A−1 = (A+H)−1(I − (A+H)A−1)

= (A+H)−1(−HA−1)

= A−1(−HA−1) + φ(H)

This is just a guess when the H is dropped. To see if you’re right, go through the whole process. The
remainder term is given as:

φ(H) = (A+H)−1 −A−1 +A−1HA−1

= (A+H)−1(I − (A+H)A−1 + (A+H)(A−1HA−1))

= (A+H)−1(I − I −HA−1 +HA−1 +HA−1HA−1)

= (A+H)−1(HA−1HA−1)

Now to show that ‖φ(H)‖
‖H‖ → 0 when ‖H‖ → 0.

‖φ(H)‖
‖H‖

=
‖(A+H)−1(HA−1HA−1)‖

‖H‖

≤ ‖(A+H)−1‖‖H‖‖A−1‖‖H‖‖A−1‖
‖H‖

= ‖(A+H)−1‖‖A−1‖‖H‖

This goes to zero as required. Therefore, f is differentiable and since f(A+H) = f(A)−A−1HA−1 +φ(H),
f ′(A)H = −A−1HA−1. Aha indeed.

5 Partial Derivatives(2009)

Let f be a real valued function on an open set in R2. f is C1 ⇔ ∂f
∂x and ∂f

∂y exist and are continuous.
“⇒ ”

f is differentiable so,
f(x+ h) = f(x) + f ′(x)h+ φ(h)
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We know that f ′(x) can be represented as a 1x2 matrix(Jacobian). In fact, the elements of the matrix are
∂f
∂x and ∂f

∂y . This completes the proof. This is the proof shown in the lectures. To be more rigorous, I would
assume f is differentiable. Then you know that limit thing exists. Evaluate along the x and y axis and by
definition, these are the partial derivatives.

“⇐ ”
Let the partials exist and be continuous. Now suppose that h = (h1, h2) such that,

f(a+ h) = f(a) +
∂f

∂x
(a)h1 +

∂f

∂y
(a)h2 + φ(h)

φ(h) = f(a+ h)− f(a+ h2e2)− ∂f

∂x
(a)h1 + f(a+ h2e2)− f(a)− ∂f

∂y
(a)h2

By the mean value theorem, for some m,n,(draw a graph for this, it makes it easier to understand. It goes
along direction of the x or y axis),

=
∂f

∂x
(m)h1 −

∂f

∂x
(a)h1 +

∂f

∂y
(n)h2 −

∂f

∂y
(a)h2

Now to show that this remainder term goes to 0.

‖∂f∂x (m)h1 − ∂f
∂x (a)h1 + ∂f

∂y (n)h2 − ∂f
∂y (a)h2‖

‖h‖
≤
(
‖∂f
∂x

(m)− ∂f

∂x
(a)‖

)
‖h1‖
‖h‖

+

(
‖∂f
∂y

(n)− ∂f

∂y
(a)‖

)
‖h2‖
‖h‖

which tends to 0 as ‖h‖ → 0 since ‖hi‖ ≤ ‖h‖. So f is differentiable and is given by the partials which are
continuous.

�

6 Symmetry of second derivatives(2009,2006)

Let f be a C2 function on an open set V in R2. Prove that

∂2f

∂x∂y
=

∂2f

∂y∂x

Take the points (a, b), (a+h, b), (a, b+ k), (a+h, b+ k) ∈ V such that they form a rectangle in the open set
V with h, k > 0. Define T as:

T = f(a+ h, b+ k)− f(a+ h, b)− f(a, b+ k) + f(a, b)

Define g(x) = f(x, b+ k)− f(x, b). Then

T = g(a+ h)− g(a)

By the mean value theorem,
T = g′(c)h

for c ∈ (a, a+ h). Using g(x) to evaluate g′(x):

T =

[
∂f

∂x
(c, b+ k)− ∂f

∂x
(c, b)

]
h

=

[
∂

∂y

∂f

∂x
(c, d)

]
hk

4



for some d ∈ (b, b+ k) by the MVT. This time define u(x) = f(a+ h, x)− f(a, x). With a similar argument,

T =

[
∂

∂x

∂f

∂y
(c′, d′)

]
hk

for some c′ ∈ (a, a+ h), d′ ∈ (b, b+ k). Equating,

⇒
[
∂

∂y

∂f

∂x
(c, d)

]
hk =

[
∂

∂x

∂f

∂y
(c′, d′)

]
hk

∂

∂y

∂f

∂x
(c, d) =

∂

∂x

∂f

∂y
(c′, d′)

Now let h, k → 0. Then (c, d) = (c′, d′) = (a, b).

�

7 Inverse Function Theorem(2010,2009,2008)

State and prove the inverse function theorem. This isn’t fun to prove. Sometimes, he only asks you to prove
about half of the theorem but that doesn’t make it any more exciting. This year, I’m predicting that he’s
asking the full question.

Let M,N be finite dimensional vector spaces with V open in M and let f : M ⊃ V → N be a Cr

function. If f ′ : M → N is invertible at a ∈ V , then there exists an open neighbourhood W of a in M such
that f is a Cr-diffeomorphism mapping W onto f(W ) which is open in N .

Let T be the inverse of f ′(a) and let F (x) = Tf(x + a) − Tf(a). Then by showing that if there exists
an open neighbourhood U of 0 for which F maps onto F (U) by a Cr-diffeomorphism, thenf maps U + a
onto open f(U +a) by a Cr-diffeomorphism. Drawing a diagram will make this clear. The proof is split into
three parts.

7.1 Homeomorphism

Firstly,

F (0) = Tf(0 + a)− Tf(a) = 0

F ′(x) = Tf ′(x+ a)

F ′(0) = 1M

1M is the identity. By continuity of F ′, ∀ε > 0,∃δ > 0 st. ‖x‖ < δ ⇒ ‖F ′(0) − F ′(x)‖ < ε. Then a closed
ball, B with radius r > 0, B = {x ∈M : ‖x‖ ≤ r} can be chosen such that ∀x ∈ B,

‖1M − F ′(x)‖ ≤ 1

2

detF ′(x) 6= 0

Now take x, y ∈ B such that by the reverse triangle inequality,

‖x− y‖ − ‖F (x)− F (y)‖ ≤ ‖(1M − F )x− (1M − F )y‖

≤ 1

2
‖x− y‖
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by the mean value theorem. Therefore

‖F (x)− F (y)‖ ≥ 1

2
‖x− y‖

When F (x) = F (y), 0 ≥ 1
2‖x− y‖ ⇔ x = y. Thus, F is injective. Also, F (x)→ F (y)⇒ x→ y(easily shown

using εδ). F and F−1 are continuous so F : B → F (B) is a homeomorphism.

7.2 1
2
B ⊂ F (B)

1
2B is defined as the closed ball with centre 0 and radius r/2 > 0. Let g(x) = x− F (x) + a with a ∈ 1

2B for
x ∈ B.

g′(x) = 1− F ′(x)

‖g′(x)‖ = ‖1− F ′(x)‖ ≤ 1

2

from above for all x ∈ B. By the mean value theorem,

‖g(x)− g(y)‖ ≤ 1

2
‖x− y‖

for all x, y ∈ B. Also, since g(0) = a,

‖g(x)‖ = ‖g(x)− g(0) + a‖ ≤ ‖g(x)− g(0)‖+ ‖a‖

≤ 1

2
‖x− 0‖+ ‖a− 0‖

≤ 1

2
r +

1

2
r

= r

This means that g(x) ∈ B, ∀x ∈ B ie. g : B → B. And from ‖g(x)− g(y)‖ ≤ 1
2‖x− y‖, g(x) is a contraction

mapping. There exists a fixed point. Take x1 = g(x0), x2 = g(x1), . . . , xk = g(xk−1) etc. Then taking k
going to infinity, ∃z ∈ B s.t. g(z) = z. So,

g(z) = z − F (z) + a

⇒ F (z) = a

So a ∈ F (B) and we have 1
2B ⊂ F (B).

7.3 Diffeomorphism

Let B0 be the interior of B. Then let U = B0 ∩ F−1( 1
2B0). U is open as it is the union of two open sets.

We know that F is a homeomorphism and Cr. All that is left is to show that F−1 is Cr. Denote F−1 as G.
Take points x and x+ l in F (U) such that G(x+ h) = y + l and G(x) = y. F is differentiable so we have,

F (y + l) = F (y) + F ′(y)l + φ(l)

with ‖φ(l)‖‖l‖ → 0 as ‖l‖ → 0. Denote S = F ′(y). Then,

F (y + l) = F (y) + Sl + φ(l)

x+ h = x+ Sl + φ(l)

l = S−1h− S−1φ(l)
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Now looking at G,

G(x+ h) = y + l

= y + S−1h− S−1φ(l)︸ ︷︷ ︸
remainder term

Check does the remainder term go to zero.

‖S−1φ(l)‖
‖h‖

≤ ‖S−1‖‖φ(l)‖
‖l‖

‖l‖
‖h‖

From the previous result, ‖F (x) − F (y)‖ ≥ 1
2‖x − y‖ so ‖h‖ ≥ 1

2‖l‖ or ‖l‖‖h‖ ≤
1
2 . This means that ‖l‖ → 0

when ‖h‖ → 0. So the remainder term goes to zero when ‖h‖ does. Therefore, G is differentiable. The
derivative is equal to:

G′(x) = S−1 = [F ′(y)]−1 = [F ′(G(x))]−1

Now assume that G is Cs for 0 ≤ s < r. Since G′(x) is the composition of Cs functions, G′(x) is Cs ⇒ G(x)
is Cs+1. By induction, G is Cr. To summarise, on U , we have F is bijective and F and F−1 are Cr making
it a Cr-diffeomorphism.

�

8 Implicit Function Theorem(2010,2009,2008)

State and prove the implicit function theorem

Let f = (f1, . . . , f l) be Cr real valued functions on an open set V in Rn → Rl. Let X = {x ∈M : f(x) = 0}
be the solution space. Take a ∈ X such that rankf ′(a) = l say where the first l columns are linearly indepen-
dent. Then there exists an open neighbourhood U of a in X such that the coordinate functions xl+1, . . . , xn

map U onto open set F (U) in Rn−l homeomorphically and the functions x1, . . . , xl are Cr functions of
xl+1, . . . , xn.

Set F = f(f1, . . . , f l, xl+1, . . . , xn). Noting that ∂fi

∂xk = 0 for 1 ≤ i ≤ l, k ≥ l + 1 and ∂xi

∂xk = δik for
k ≥ l + 1, then,

F ′(a) =



∂f1

∂x1 . . . ∂f1

∂xl
∂f1

∂xl+1 . . . ∂f1

∂xn

...
...

...
...

∂f l

∂x1 . . . ∂f l

∂xl
∂f l

∂xl+1 . . . ∂f l

∂xn

0 . . . 0 1 . . . 0
...

...
...

. . .
...

...
...

...
...

0 . . . 0 0 . . . 1


Now splitting a matrix into blocks with 0 in the bottom corner, det

(
A B
0 D

)
= detAdetD. The determinant

of the identity is 1. This gives detF ′(a) = det
(∂(f1,...,f l)
∂(x1,...,xl)

)
. This is nonzero because the columns are

linearly independent. By the inverse function theorem, there exists an open neighbourhood W of a in V
such that F maps W onto an open set F (W ) by a Cr diffeomorphism. Let U = X ∩ W . F maps the
first l coordinates to 0 because X is the solution space. So FU (x) = (0, . . . , 0, xl+1, . . . , xn). Hence, the
coordinate functions xl+1, . . . , xn map U onto open F (U) which is open in Rn−l by a Cr diffeomorphism.
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Let G = F−1 = G(G1, . . . , Gn). Then,

x1 = G1(0, . . . , 0, xl+1, . . . , xn)

...

xl = Gl(0, . . . , 0, xl+1, . . . , xn)

F is a Cr diffeomorphism so these are Cr functions on U.

�

9 Pull-Back(2010,2009,2008,2006)

Prove that the pull-back commutes with the differential.

φ∗df = dφ∗f

Let be defined in V ⊂ Y . Let v ∈ TxX,x ∈ φ−1V .

〈(φ∗df)x, v〉 = 〈(df)φ(x), φ∗v〉 by definition of the pullback of the differential

= [φ∗v]f by definition of the differential

= v[φ∗f ] by definition of the pushforward

= 〈(dφ∗f)x, v〉 by definition of the differential

Therefore, (φ∗df)x = (dφ∗f)x∀x ∈ X so φ∗df = dφ∗f .

10 Chain Rule(2010,2006)

Prove the chain rule for maps on manifolds.

The theorem states that for maps on manifolds X
φ→ Y

ψ→ Z, (ψ ◦ φ)∗ = ψ∗ ◦ φ∗. Let f be a scalar
field and v = α̇(t) ∈ TX.

[(ψ ◦ φ)∗v]f = v[(ψ ◦ φ)∗f ] = v[f ◦ ψ ◦ φ] = v[φ∗(f ◦ ψ)]

= φ∗v[f ◦ ψ] = φ∗v[ψ∗f ] = [(ψ∗ ◦ φ∗)v]f

�

In words, recall that,

[φ∗v]f = v[φ∗f ] = ˙(φ ◦ α)(t)f = velocity vector of φ ◦ α at t

= φ∗[velocity vector of α at t]

(ψ ◦ φ)∗α̇(t) = velocity vector of (ψ ◦ φ)α at t

= ψ∗(velocity vector of (φ)α at t)

= (ψ∗ ◦ φ∗)α̇(t)

v is arbitrary so the proof is complete.

�
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11 Definitions

n-dimensional coordinate system
Let V be an open set in X, a topological space. An n-dimensional coordinate system on X with domain V ,
y = (y1, . . . , yn), is a homeomorphism mapping V onto an open set y(V ) in Rn.

Cr compatible
Let y = (y1, . . . , yn) with domain V and z = (z1, . . . , zn) with domain W be n-dimensional coordinate
systems on topological space X. y and z are Cr compatible if yi is a Cr function of z1, . . . , zn and zi is a
Cr function of y1, . . . , yn on V ∩W .

Manifold
Let X be a topological space. X is an n-dimensional smooth manifold if given a collection of mutually C∞

compatible n-dimensional coordinate systems, the domains of the coordinate systems cover X.

Paramaterised Path
A paramaterised path is a continuous map α : R ⊃ U → X, t 7→ α(t) where U is an open set and X is a
topological space with coordinates yi(α(t)) being C∞.

Scalar Field
A scalar field, f , is a real-valued smooth function on an open set V in manifold X, f : V → R.

Partial Derivative
Let f be a scalar field and yj a coordinate system. The partial derivative ∂

∂yja
of f at a ∈ X is defined as,

∂f

∂yja
=

∂

∂xj
F (y(a))

Velocity Vector
If α(t) is a path in X, the velocity vector at parameter t of a parametrised path in X is defined as the
operator α̇(t) that acts on a scalar field f ,

α̇(t)f =
d

dt
f(α(t)) = rate of change of f along α

More importantly,

=
d

dt
F (y1(α(t)), . . . , yn(α(t))

=
∂F

∂x1
(y(α(t))

d

dt
y1(α(t)) + · · ·+ ∂F

∂xn
(y(α(t))

d

dt
yn(α(t))

=
∂f

∂y1α(t)

d

dt
y1(α(t)) + · · ·+ ∂f

∂ynα(t)

d

dt
yn(α(t))

=

[
d

dt
y1(α(t))

∂

∂y1α(t)
+ · · ·+ d

dt
yn(α(t))

∂

∂ynα(t)

]
f

So the velocity vector is a linear combination of partial derivatives. This leads to the next definition.

Tangent Space
The tangent space to X at a is the set of all velocity vectors at the point a. It is denoted TaX.

Differential of f at a
The differential of f at a, dfa, is the linear form, TaX → R given by

〈dfa, v〉 = vf = α̇(t)f

9



dfa belongs to the dual space (TaX)∗.

Vector Field
A vector field, v with domain V , is a function on open V of manifold X, a 7→ va where a ∈ V ⊂ X and
va ∈ TaX, ∀a ∈ V .

Differential 1-form
A differential 1-form with domain V , ω, is a function, a 7→ ωa where ωa ∈ (TaX)∗.

Contraction
Let ω be a differential 1-form and v be a vector field both with domainW on manifoldX. The contraction,〈ω, v〉,
is defined as the scalar field,

〈ω, v〉(a) = 〈ωa, va〉

∀a ∈W and where ωa ∈ (TaX)∗, va ∈ TaX.

Differential of f
The differential of f , df , is the differential 1-form whose value at a is dfa. df measures the rate of change of f .

Pull-back
A function φ : X → Y is called a map of manifolds if X and Y are manifolds. Let f be a scalar field with
domain V on Y .The pullback φ∗f is defined as,

φ∗f = f ◦ φ

and it has domain φ−1V .

Push-forward
Let v ∈ TaX. Then the push-forward φ∗v belonging to Tφ(a)Y is defined as,

[φ∗v]f = v[φ∗f ]

Pull-back of ω under φ
Let ω ∈ (Tφ(a)Y )∗ be a differential 1-form with domain V . Then the pull-back of ω under φ is the differential
1-form on X with domain φ−1V defined as,

〈(φ∗ω)a, v〉 = 〈ωφ(a), φ∗v〉

∀v ∈ TaX, a ∈ φ−1V .

Tangent Bundle
The tangle bundle of X, TX is the set of all tangent vectors to X.

Metric Tensor
A metric tensor (.|.) on a manifold X is a function on X defined as

a 7→ (.|.)a

(.|.)a is a scalar product on TaX. ie (.|.)a takes two vectors from TaX and outputs a real number with the
property of being bilinear, symmetric and nonsingular. If y is a coordinate system on V , then denote,

gij = (
∂

∂yia
| ∂
∂yja

)a
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as the components of the metric tensor w.r.t. the coordinate system.

Line Element
The line element, (ds)2a associated to the metric tensor (.|.) is the associated quadratic form,

(ds)2a(v) = (v|v)a

∀v ∈ TaX. If v is a vector field with domain W , then (ds)2(v) = (v|v) is a scalar field with domain W .
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