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In particulate soft matter systems the average number of contacts Z of a particle is an important predictor
of the mechanical properties of the system. Using x-ray tomography, we analyze packings of frictional,
oblate ellipsoids of various aspect ratios α, prepared at different global volume fractions ϕg. We find that
Z is a monotonically increasing function of ϕg for all α. We demonstrate that this functional dependence
can be explained by a local analysis where each particle is described by its local volume fraction
ϕl computed from a Voronoi tessellation. Z can be expressed as an integral over all values of ϕl:
Zðϕg; α; XÞ ¼

R
Zlðϕl; α; XÞPðϕljϕgÞdϕl. The local contact number function Zlðϕl; α; XÞ describes the

relevant physics in term of locally defined variables only, including possible higher order terms X.
The conditional probability PðϕljϕgÞ to find a specific value of ϕl given a global packing fraction ϕg is
found to be independent of α and X. Our results demonstrate that for frictional particles a local approach is
not only a theoretical requirement but also feasible.
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The average number of contacts Z that a particle forms
with its neighbors is the basic control parameter in the
theory of particulate systems known as the jamming
paradigm [1,2], where Z is a function of the difference
between the global volume fraction ϕg and some critical
value ϕJ. For soft, frictionless spheres (a practical example
would be an emulsion) this is indeed a good description [3]
because additional contacts are formed by the globally
isotropic compression of the particles which also increases
ϕg. However, in frictional granular media such as sand, salt,
or sugar the control of ϕg is not achieved by compression
but by changing the geometric structure of the sample; if we
want to fill more grains into a storage container we do not
compress them with a piston, but we tap the container a
couple of times on the counter top.
But if Z and ϕg are not simultaneously controlled by a

globally defined parameter such as pressure, the idea of a
function ZðϕgÞ runs into an epistemological problem:
contacts are formed at the scale of individual particles
and their neighbors. At this scale the global ϕg is not only
undefined, it would even be impossible for a particle scale
demon to compute ϕg by averaging over the volume of the
neighboring particles. The spatial correlations between
Voronoi volumes [4–6] would require it to gather informa-
tion from a significantly larger volume than the direct
neighbors.
To date, only two theoretical approaches have studied Z

from a local perspective: Song et al. [7] used a mean-field
ansatz to derive a functional dependence between Z and the

Voronoi volume of a sphere. This ansatz has recently been
expanded to arbitrary shapes composed of the unions and
intersections of frictionless spheres [8,9]. Second, Clusel
et al. [10,11] developed the granocentric model which
predicts the probability distribution of contacts in jammed,
polydisperse emulsions. The applicability of the granocen-
tric model to frictional discs has been shown in [12].
The aim of this experimental study is to go beyond the

case of spheres and understand how the average Z in
packings of frictional ellipsoids originates from the local
physics at the grain level. We find that, to a first approxi-
mation, the number of contacts an individual particle forms
depends on only two parameters: the material parameter α
which is the length ratio between the short and the two
(identical) long axes of the ellipsoids. And a parameter that
characterizes the cage formed by all the neighboring
particles: the local volume fraction ϕl which is the particle
volume divided by the volume of its Voronoi cell.
Frictional ellipsoids used in experiments [13–16] exhibit

a number of differences to the frictionless ellipsoids often
studied numerically [17–23]. The latter have been found to
form packings with less than the number of contacts
required for isostaticity, which is defined as having enough
constraints to block all degrees of freedom of the particles
[17,21,24]. This apparent paradox has been resolved by
Donev et al. [25], who showed that in this analysis the
contacts cannot be treated as the contacts between friction-
less spheres: the curvature of the ellipsoids blocks rota-
tional degrees of freedom even in the absence of friction.
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In contrast, we find packings of frictional ellipsoids to be
hyperstatic over the whole range of ϕg studied, in agree-
ment with numerical simulation including friction [26,27].
Particles and preparation.—We study two different

types of oblate ellipsoids, the properties of which are
summarized in Table I. Figure 1(a) shows pharmaceutical
placebo pills (PPP) with α ¼ 0.59 produced by Weimer
Pharma GmbH. Because of their sugar coating, their
surface is rather smooth; their static coefficient of friction
μs against paper is 0.38 (measured using a small sledge on a
slowly raised inclined plane). The second particle type
displayed in Fig. 1(b) are gypsum ellipsoids cured with
resin, produced with a 3D printer (Zprinter 650, Z corpo-
ration). The aspect ratio of these 3DP particles ranges from
0.4 to 1 (i.e., spherical), their rougher surface results in
values of μs between 0.67 and 0.75. Because of the
production process, the 3DP particles have hummocks of
up to 100 μm on their short axis. As a consequence, their
volume deviates up to 3% from a perfect ellipsoid,
compared to 1% for the PPP particles.
Samples are prepared by first creating a loose packing of

ellipsoids inside a plexiglass cylinder with an inner
diameter of 104 mm; then the samples are tapped in order
to increase ϕg to the desired value. We use three different
protocols to prepare the initial loose samples—they are
indicated by different symbols in the figures below.
However, our results do not seem to depend on the initial
preparation method, details of which can be found in the

Supplemental Material [28]. Except for the loosest samples,
the packings are compactified by applying sinusoidally
shaped pulses on an electromagnetic shaker (LDS V555).
The width of the pulses is 50 ms and the peak acceleration
2g (where g ¼ 9.81 m=s2). At a repetition rate of 3 Hz, up
to 1500 taps are applied to prepare the highest values of ϕg.
Image analysis.—Tomograms of the prepared packings

are acquired using x-ray computed tomography (GE
Nanotom) with a resolution of 64 μm per voxel. The
resulting three-dimensional gray scale image is the starting
point for the identification of all particle centers and
orientations [cf. Fig. 1(c)] using the methods described
in Ref. [32]. To reduce boundary effects, only particles
with centers that are at least two long axes away from the
container walls were included in our analysis; Table I
lists the numbers of these core particles. To assure spatial
homogeneity, we discard all experiments where the stan-
dard deviation of the azimuthally averaged volume fraction
is larger than 0.66%. Similarly, to exclude packings with
a too large degree of order we only consider samples with
θ > 0.5 rad, where θ is the average angle of the short
axis with respect to gravity with θ ¼ 1 corresponding
to a random orientation (see Supplemental Material
[28]). The particle positions and orientations of all experi-
ments reported here can be downloaded from the Dryad
repository [33].
From the geometrical representation of the sample we

determine the average Z using the contact number scaling
method [32]. Finally, the Voronoi cells of the particles are
computed with the algorithm described in [34]. Figure 1(d)
displays the Voronoi tessellation of a small subset of
particles. By dividing the volume of the particle by the
volume of the Voronoi cell we obtain for each particle its
local volume fraction ϕl; the harmonic mean of all particles
in the core region corresponds to the global volume
fraction ϕg.
The average contact number Z as a function of ϕg is

displayed in Fig. 2. The main conclusion of Fig. 2 is that the
global average of Z depends on both ϕg and α. As expected
for frictional particles [35–39], the contact number of all
samples is significantly above the isostatic value of
four [40].

(a)

(b)

(c) (d)

FIG. 1 (color online). (a) Pharmaceutical placebo pills with
α ¼ 0.59. (b) Gypsum particles made with a 3D printer with
α ¼ 0.40. (c) Rendering of the particles detected in a x-ray
tomogram. (d) The black wire frame indicates the Voronoi cells of
the ellipsoids.

TABLE I. Material properties of the particles. The first column displays the color code used in Figs. 2–4. Error bars on μs are standard
deviations over 15 experiments. The last three columns show the empirical fit parameters for Zlðϕl; αÞ according to Eq. (2).

Half axis Empirical fit parameters for Zlðϕl; αÞ
Aspect
ratio α

Short
[mm]

Long
[mm] Type

Friction
coefficient μs

Particles in
core region

Number of
analyzed packings a b c

Spheres 3.1 3DP 0.75� 0.07 660–850 15 60.4 −52.2 14.8
0.80 2.65 3.30 3DP 0.75� 0.05 750–850 17 60.4 −52.4 15.1
0.60 2.20 3.75 3DP 0.67� 0.03 620–710 16 44.7 −31.0 8.4
0.59 2.15 3.55 PPP 0.38� 0.05 850–910 15 63.5 −53.7 15.4
0.40 1.60 4.00 3DP 0.67� 0.05 620–730 10 25.3 −10.7 3.9
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Switching to a local ansatz.—As discussed in the
introduction, the formation of contacts between particles
needs to be explained solely by parameters which are well
defined on the particle level. We therefore start with an
ansatz:

Zðϕg; α; XÞ ¼
Z

Zlðϕl; α; XÞPðϕljϕg; α; XÞdϕl: ð1Þ

Here the contact function Zlðϕl; α; XÞ represents the local
physics, i.e., the number of contacts formed by a particle of
shape α, inside a Voronoi cell of size ϕl and potentially
characterized by further locally defined variables X such as
friction, fabric anisotropy, or measures of local order.
Pðϕljϕg; α; XÞ is the conditional probability to find a
particle with ϕl in a given packing; an integration over
all values of ϕl will result in the global value of Z.
In order to measure how Zl depends on ϕl, we determine

the local contact number for each ellipsoid; see the
Supplemental Material [28]. Figure 3(a) shows ZlðϕlÞ
for all our experiments. The key observation is that in
agreement with our ansatz the curves for the 3DP particles
do not depend on the global volume fraction ϕg. This result
has been previously only shown for spheres [41]. For the
PPP particles the collapse is less conclusive, we discuss
possible reasons below. In consequence, we take for each
value of α the average over all experiments, the resulting
Zlðϕl; αÞ curves are shown in Fig. 3(b). Here we have
ignored not only ϕg but also all higher-order terms X
because within the resolution of our experiments we were
not able to discern between different possible candidates.
For a discussion of, e.g., X being the orientation of the short
axis, see the Supplemental Material [28]. In order to obtain
a phenomenological description for Zl we perform for each
aspect ratio a parabolic fit using

Zlðϕl; αÞ ¼ aϕ2
l þ bϕl þ c: ð2Þ

The results are displayed in Fig. 3(b), the values of the fit
parameters a, b, and c are listed in Table I.
Fitting Eq. (2) is a purely phenomenological approach, it

is justified only by the absence of any theoretical pre-
dictions for frictional ellipsoids. The only analytical result
available is for spheres [7]; it is in good agreement with our
data (without any fit parameters) as shown in the inset of
Fig. 3. However, as discussed in the Supplemental Material
[28], this result cannot be easily generalized to frictional
ellipsoids. Also included in the Supplemental Material are
fits which show that even a local reinterpretation of the
jamming paradigm does fail to describe the physics.
Properties of the local volume fraction distribution.—

Figure 4 reveals a number of interesting scaling properties
ofPðϕlÞ. Panel 4(a) showsPðϕlÞ for all different aspect ratio
at ϕg ≈ 0.625. The good agreement indicates that PðϕlÞ is
independent of α. In Fig. 4(b) a rescaled P is plotted for all
values of ϕg. This demonstrates, that the mean ϕg and the
standard deviation of the local volume fraction distribution
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FIG. 2 (color online). Contact number as a function of the
global volume fraction. Lines correspond to Eq. (6), which is
the numerical integration of the local theory presented here.
The different symbols indicate preparation of the initial packing,
which is then compactified for all but the loosest samples by
tapping. The different aspect ratios and particle types are
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FIG. 3 (color online). Measuring the local contact number
function Zl that describes how many contacts an average particle
with a local area fraction ϕl will form. In panel (a) each line
corresponds to a single experiment, i.e., a single data point in
Fig. 2. Each cross represents the average number of contacts a
particle with this value of ϕl (using a bin size of 0.02) will form.
The colored lines in panel (b) are averages over all data sets (i.e.,
different values of ϕg) displayed in the upper panel. The black
dashed lines are parabolic fits according to Eq. (2). The inset
shows the theoretical result from Song et al. [7] for spheres
compared with our sphere data.
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σðϕgÞ are sufficient to describeP. This result has previously
only been known for spheres [42,43] and discs [12]. Finally,
Fig. 4(c) demonstrates that the standard deviation σðϕlÞ of
the local packing fraction distribution depends only on ϕg

and not α.
Together, these results show that Pðϕljϕg; α; XÞ in

Eq. (1) can be replaced by PðϕljϕgÞ:

Zðϕg; α; XÞ ¼
Z

Zlðϕl; α; XÞPðϕljϕgÞdϕl: ð3Þ

The advantage of this ansatz is a clear separation of the
contact number problem into the local physics at the grain
level and a probabilistic term connecting the local and the
global volume fraction. Please note that without a better
understanding of the origin of the scaling properties shown
in Fig. 4 it is not possible to decide on the causality between
ϕl and ϕg. So writing PðϕljϕgÞ can imply either that ϕg is
the cause of the observed PðϕlÞ or that ϕg can be seen to
follow from the prepared PðϕlÞ.

In order to get an empirical expression for Z we fit
the local packing fraction distribution PðϕljϕgÞ with a
Gaussian [44]

PðϕljϕgÞ ¼
1

σðϕgÞ
ffiffiffiffiffiffi
2π

p eð−ðϕl−ϕgÞ2=2σðϕgÞ2Þ ð4Þ

and the dependence of σ on ϕg with a linear equation which
yields

σðϕgÞ ¼ −0.126ϕg þ 0.109: ð5Þ

Both fits are displayed as black lines in Fig. 4. Inserting
Eqs. (2) and (4) into Eq. (3) and performing the integration
leads to

Zðϕg; αÞ ¼ aσðϕgÞ2 þ aϕ2
g þ bϕg þ c; ð6Þ

with σ according to Eq. (5) and a; b; c as shown in Table I.
A comparison of our experimental data with Eq. (6) is

shown in Fig. 2. The good agreement for all 3DP particles
demonstrates the validity of our ansatz Eq. (3). For the PPP
particles with α ¼ 0.59 the agreement is only fair, pointing
to the need for an additional parameter X in Zlðϕg; α; XÞ.
However, the experimental scatter does not allow us to
assess the type of higher order corrections required. The
need for inclusion of such a parameter can also stem from
the history-dependent behavior of frictional particles. It has
recently been shown for spheres [45] and tetrahedra [39,46]
that for identical ϕg the contact number can depend on the
preparation history; modeling such behavior will require
the addition of further locally defined parameters.
Conclusion.—The global contact numbers of packings of

frictional spheres and ellipsoids can be explained by an
ansatz that combines a local contact function and a condi-
tional probability. The contact function does depend solely
on parameters defined on the particles scale, including the
local volume fraction and the aspect ratio of the particles.
The conditional probability to find a particle with a specific
local volume fraction is sufficiently described by the global
volume fraction alone. We expect our results (and our data
sets, available as open data [33]), to be a valuable reference
point for the generalization of existing theoretical
approaches such as the granocentric model [10,11] or the
statistical mechanics approach to granular media [7,8]
towards frictional granular matter. Extensions of our con-
tact function including other locally defined parameters,
such as, e.g., the fabric anisotropy, should be able to
describe nonisotropic effects, such as observed in shear-
jammed frictional packings [47,48].

We thank Weimer Pharma GmbH for providing the
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