Rocking Newton’s cradle
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In textbook descriptions of Newton’s cradle, it is generally claimed that displacing one ball will
result in a collision that leads to another ball being ejected from the line, with all others remaining
motionless. Hermann and Schizia, Hinch and Saint-Jean, and others have shown that a realistic
description is more subtle. We present a simulation of Newton’s cradle that reproduces the break-up
of the line of balls at the first collision, the eventual movement of all the balls in phase, and is in
good agreement with our experimentally obtained data. The first effect is due to the finite elastic
response of the balls, and the second is a result of viscoelastic dissipation in the impacts. We also
analyze a dissipation-free ideal Newton’s cradle which displays complex dynamieso4@merican
Association of Physics Teachers.
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[. INTRODUCTION the vibrational motion of the chain of contacting balls. Their
conclusion was based on their experiments with gliders on an

A line of touching balls suspended from a rail by pairs ofair track, where each glider was equipped with a spring
inelastic strings is often called Newton’s cradéee Fig. 1 bump_er. T_hese experiments effectively quel the f|r_st set of
In introductory physics textbooKs? it is generally intro- collisions in Newton’s cradle. When all gl|gjers are in con-
duced as an illustration of the conservation of momentunfact, the gliders may be represented as a linear chain, allow-
and energy. When one ball is displaced from the other foul"d for the calculation of eigenfrequencies and corresponding
and released, it is claimed that the collisions will result in theave numbers. Only when the masses of the gliders and the
ball at the opposite end of the line being ejected, with allSPring constants were chosen to achieve a dispersion-free
other balls remaining stationary. As the ejected ball swingsinear relation, did the gliders behave as in the textbook
back, it will collide with the line of balls. According to the descriptiorf? . .
common description, only the ball that was released initially " @ follow-up paper, Herrmann and Sélie-examined
will be ejected, while all other balls remain stationary. the actual cradle experiment and found in both the experi-

However, the actual experiment reveals a slightly differenfMents and simulations that the first impact of a ball leads to

scenario. Careful observation shows that the first coIIisiorT'i brhea_\k-u_p 0{ the Iiner,] contra(rjy Ito dthﬁ textbook dest;:ription.
will break up the line of balls with the effect that all balls '" N€Ir simulations, they modeled the interaction between

move. After further collisions all balls will eventually swing Palls as points of mass that are connected byHertziar)
in phase, with an ever decreasing amplitude. The observe?P"ings. The force between two such masses is given by
breakup of a line of balls after the impact of one ball was
analyzed recently by Hinch and Saint-Jéakle extend their F=k(y,=Yn-1)% (1)
work to consider the multiple collisions that follow thereaf-
ter. We believe that a closer examination of Newton's cradlgyherey,, is the displacement of baii from its equilibrium
can enhance anltcj) extend the pedagogical value of the Originﬁbsition, k is a spring constant, and the exponert 3/2.
demonstre}tmﬁ. . . The comparison of the propagation time of a perturbation
Newton's cradle has a long history. In 1662, papers on it§yrq,gh 4 line of balls obtained from both experiments and
underlying physics were presented to the Royal Society byjmjations using a range of different values @fshowed
no less than three eminent researctielshn Wallis(known 4t the assumption of Hertzian springs in Ef). is valid.
for his presentation ofr as an infinite produgt Christopher  proy their simulations of a five-ball cradle, Herrmann and
Wren (mathematician, astronomer and architect of St. Paul'ssejtz found that after the first collision, balls 1, 2, and 3
Cathedral in Londop and Christiaan Huygen@uthor of &  y6ye hackward, while balls 4 and 5 move forward with ball
book on the wave theory of light and contributions t0 prob-4 carrying about 12% of the initial momentum of the inci-
ability theory. Huygens pointed out that an explanation re-gent pall [We have labeled the balls in the direction from the
quired both conservation of momentum and kinetic energyincoming ball(ball 1) to the ball at the opposite end of the
(He did not use th.e expression kinetic energy but referred tqQne (ball 5).] The momentum of ball 5 after the collision is
a quantity proportional to mass and velocity squared. nearly as large as that of ball 1 before the collision.
However, two equations are not sufficient to describe the wjthout performing further simulations Herrmann and
behavior of Newton's cradle as was pointed out in Ref. 8. Ageit? concluded that when ejected ball 5 swings back, it
characterization of Newton's cradle consistinghoballs re-  would impact not on a compact line of ballsecause the line
quiresN velocities, but the conservation laws only give two has been broken up by the first impadbut rather there
equations. Herrmann and Schale® analyzed Newton’s should be a sequence of independent collisions. However, in
cradle in terms of elastic forces between the contacting ballgeneral, there can be multiple collisions involving more than
They argued that a necessary condition for consistency wittwo balls in contact during the collision as we will see in
the simplified textbook description is that there be no disperSec. Il. This issue will be examined further in relation to our
sion in the relation between frequency and wave number foexperimental results discussed in Sec. VI.
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Fig. 2. The overlap of two balls.

Fig. 1. Newton’s cradle. Ball 1 on the right is released and swings down to

impact the line of stationary balls. It is generally suggested that only ball 5 . . .
on the left is ejected. However, both experiments and our simulations shO\XIiescrlbed in Sec. |, the force on bﬂ”may be written as
that all balls will move after the impact.  _

P mxn_k[fg—l,n_gg,nﬁ—l]: (4)

wherex,, denotes the position of batl.

Hinch and Saint-Jedrconducted an exhaustive numerical ~ The introduction of gravity requires some discussion. Al-
and theoretical study of the fragmentation of a lindNaballs ~ though Eq.(4) holds for a one-dimensional line of balls
by an impact. They find that some balls at the far end detaciwhere the impact is in the same direction as the line, New-
from the line and fly off, some in the middle hardly move, ton’s cradle is two dimensional. The balls are attached to a
and the impacting ball rebounds backward bringing with itframe by an inelastic string of lengthand can swing about
some of its nearby balls. They reproduced the numerical retheir respective equilibrium positiong{,,L) along arcs of
sults of Ref. 9 for the first impact, and also set their resultsircles. This motion causes the collisions to become off cen-
into a wider context. For a linear contact force law ( tered if the balls are a finite distance away from their equi-
=1), the number of balls that are detached from the line idibrium positions. Our model neglects this effect. It is re-

N _ 1 gyl @ stricted to small angles or_amplitud|e§—_x0'n|<L, in order
detachr™ = ' to maintain a one-dimensional description of the cradle.
while the majority of balls rebound. For the Hertzian force In the same approximation, gravity can be modeled as a
law (a=3/2) only a few balls rebound together with the simple restoring force, that is, a harmonic spring which acts

impacting ball, with a velocity greater than 1% of the impactto move each ball back to its equilibrium positions,. The
velocity. For example, for a line di=5 balls, two balls will  gravitational spring constant is given By=mg/L.

leave in the forward direction, foN=15 this number in- The equations of motion for the dissipation-free Newton’s
creases to three. However, no power law analogous t¢Zkq. cradle are thus:

was established. X @ @

Despite the above studies and recent work in engineering M3 =Keh-10~K&nn+1TKg(Xon=%n), ®)
literature®* there still is a need for further work on the nature wheren ranges from 1 td\N. We solved Eq(5) for N=5
of Newton’s cradle for the following reasons. Because gravusing the second-order velocity Verlet algorittnand the
ity was not included, the discussion was limited to the firstinitial conditions forx,(t=0): x;(0)=A, x,(0)=X, , for
impact. What happens in subsequent collisions? If we asy<np<5, andx,(0)=0 for all n, corresponding to one ball

sume a dissipation-free system, will the motion settle dowr,eing released with an amplitudeon to a stationary line of
to a regular behavior or will it be chaotic? In what way will balls (see Fig. 1

d_|SS|pat|on affec; the motion? We will discuss t_hese ques Modeling contacting spheres requiras=3/2 (Hertz
tions by presenting the results of theory, experiments, an L) 23 The soring constank mav be written in terms of
simulations where gravity has explicitly been included, to- t. ial Ft) tg y

gether with dissipative effects due to collisions and friction, M'at€r1al constants as

Our work by no means exhausts the possible corrections that k= \2RE/[3(1— 1?)], (6)
might be added to the model, but it seems sufficient for the . ) i , )
available data. whereE is Young’s modulusy is Poisson’s ratio, an® is

the radius of the ballS.

It is common to introduce dimensionless variables before
solving the equations of motion numerically. However, in
our problem there are two time and length scales. Although
the swinging balls may best be described in terms of their
Emn=(2R=Tmp) 4, (3  period Ty=27L/g and string length_, individual colli-

whereR is the radius of the balls and,, is the distance SIONS occur on a much shorter time Sdeet(mz/kZU)lls
between their centefsee Fig. 2 The notation () specifies and displacement scalg=(m”“/k?)'. Here,v is the ve-
that the value of the bracket is zero if the expression inside i#ocity of the impacting ball, given by =A\/g/L.

negative, as required for the representation of contact forces Because Eq(5) describes a conservative system, the ap-
that cannot be in tension. If we model the contact forces apropriate time ste@t for the numerical integration may be

[I. MODELING NEWTON’'S CRADLE

We define the overlag, , between two ballsn andn as
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1 ; - time evolves, an oscillatory motion becomes established, as

FAA AN we will demonstrate in Sec. IV for the case f 2.

[ [ [ Figure 3 shows the displacements of the balls Not 5

} \ where ball 1 has been released from an amplitude

o4 i il =027 onto a line of four balls. The collisiorfat time

’ " ' w/2,LIg) results in the break-up of the line with balls 4 and

5 moving forward and balls 1, 2, and 3 rebounding. Ball 5

reaches its maximum displacement at time/L/g. As it

swings back, it will no longer hit a stationary line at time

37/2\L/g. The second set of collisions, shown in Figby

is thus not antisymmetric to the first dsee Fig. 4a)]. Fig-

ure 4c) displays the third set of collisions, which is clearly

different from the first set.

o 05 . s 5 e Due to the fragmentation of the line of balls at the initial
Time (Ty) collision, there are no obvious symmetry considerations that

can explain the configurations in the latter collisions. The

Fig. 3. Displacement from their respective equilibrium positions of each ofquestion arises as to whether the system of five balls will

the five ba_lls as a fun(_:tion of time. Note that the first impact resu_lts in adevelop any periodicity in its Iong-term behavior or will be

fragmentation of the line of balls. Contrary to textbook explanations of haotic. Our data for a time of more than 10 (D'QOS best

Newton’s cradle, all balls are subsequently in motion. In the early stages of’, . . . .
this dissipation-free simulation, the largest amplitudes of motion are exhib-d!SpIayed by showing phase portraits at various tireee

ited by balls 1 and 5The displacement is plotted as a fraction of the initial Fig. 5). Generally, there is one ball colliding with a line of

amplitude of the incident ball. Time is displayed in multiples of the period four slightly separated balls. However, the amplitudes of the

of a single ballT,=2mL/g.) first ball and the line of balls display very low-frequency
oscillations between two modes of motion. In mode |, the
cluster of four balls moves much slower than the single ball,

found by checking for energy conservation. Our chosen timavhile in mode Il all balls move with a similar speed.
step of approximately 2610 3t lead to a relative error in ~ This behavior is particularly pronounced ftt=2, but
the energy of not more than 0.005% over a time of overalso is well pronounced fdd=4 andN=5 as shown in Fig.

100007, . 5,
An initial test of our code was undertaken by settiqg
=0 to model the impact on a line of balls in the absence of V. THEORY OF A TWO-BALL CRADLE

?hrg\?i?élT\glsoizgqeﬂ%:‘ogllrgglrlgdaﬂ‘(t::rdtrt]geirffs:cl:tts of Ref. 7 for We now present an analytical treatment of the relatively
pact. simple two-ball cradle, which leads to the identification of
the behavior with the phenomenon of beats. We will show
IIl. RESULTS that the softness of the balls leads to an oscillation of the
collision points. This variation of the phase portrait in time is
For ky>0, we found that the first collision breaks up the also seen in our simulations of the three- and four-ball
line of balls. As the balls move back toward their respectivecradles.
equilibrium positions, however, they do not return to their Even if the balls are not infinitely hard, the standard text-
individual stationary starting positions. This difference leadsbook description is still valid in the sense that the impacting
to a different scenario for the second set of collisions. Ashall comes to a complete standstill while the impacted ball

Displacement from equilibrium

15t set of collisions 2™ set of collisions 3" set of collisions
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Fig. 4. A detailed view of the first three sets of collisions reveals the symmetry breaking that occurs due to the break-up of the line in the firsTouklisio

is displayed in multiples ofr?/k?v)*5. We have chosen the time origin as the moment when the incident ball passes through its equilibrium position. The
displacements are made dimensionless by dividing by the lengthlgcafer visual clarity, they are shifted by, where the balls are labeled from 1 to 5 as

in Fig. 1.
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Fig. 5. (&) The long-time behavior of the dissipation-frée=5 cradle is characterized by a slow oscillation between two modes of motion. Both modes
involve the collision of one ball against a group of four. In mode Il all balls move with a similar speed, in mode | the cluster moves much slower than the
single ball.(b) Simulation results in the form of phase portraits. A sketch of the evolution of these portraits.

moves off with the same velocity as the impacting ball.bullet shot into a hanging block, see Ref.)1#he impacted
However, what is generally ignored is the fact that the impacball will move away from its equilibrium position by a dis-
does not take place instantaneously. During this finite intertanceAx and will consequently swing back after the colli-
action time, both balls have a nonzero velocity and theirsion. From our simulations, we find thatx scales asAx
point of contact will move a certain distance along the direc-«m®?% %% ~25, consistent with the displacement scale intro-
tion of the impact(For a discussion of the related case of aduced in Ref. 7°
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(X3+X2)
XC:T’ (7)

XJ/A

while the relative positiorX, is

Xr=X1_X2. (8)

The subsequent behavior, sketched in Sec. Ill, can be ane  °2 ' - - ' - - '
lyzed as follows. If we denote the positions of each ball A 7 0 0
relative to their respective equilibrium position kyandx,,
the center of masX. is given by \/vv
For simplicity, we shall assume a harmonic force law
(with spring constank,), where the subscript signifies that
the interaction is due to the relative positions of the balls.
The validity of the argument will however not be restricted 0 08 ! e 2 25 8 35 4
to this force law. The cradle will be seen to be equivalent to
a pair of coupled oscillators that are coupled only when theFig. 6. Plot of the relative positiok, for the N=2 cradle as a function of
two balls are in contact{,>0). time plotted in multiples ofl '+ 7o (time between collisionsinteraction
Each ball is subject to gravitation, modeled as a Spl’indime)' The simul_at_ion was performed with a small ratiq /K.=100 to
with spring constanK,=mg/L, as in Sec. Il.(Previously, ncrease the colision time,.
this constant was callekl;, but we shall us& in the fol-
lowing discussion to remind us that the spring acts on the To represent the resulting motion of the balls, it is helpful
center of gravity of the two balls.The potential energy of to switch identities after every collision, so that
each ball is given by}chg. The potential energy of contact pall 1~ball 2 and thusX,< —X,. We may then approxi-
is given by 3K, X? for X,>0 and is zero forX,<0. The mateX, by
natural frequencies associated with the two spring constants

for massm are given byQ2=K./m and w?=K,/m. X, = —Acos m (13
We consider the case where ball 1 is released frgm ot 1o
=—A andx,=0. Then initially we have If we combine Eq.(13) with Eq. (10) for X., we find
“beats” for the motion of one ballwith the above role re-
X1+ Xo L .
o= —A, (9a) versal implied. For 7o<I'y, we obtain
~ A mt A rt at T
X, =—A. (9b) X=-3 cosFO > cosr0+ o A cosFO coszrgt,
The center of mass motion is that of a mass &cted on by (14
external forces £=—K.x;) only. Hence, the motion is whereX denotes that the identity switches betwegrandx,
simple harmonic with frequence: after each collision. Thus, we have high-frequency oscilla-
tions with a frequency) which are modulated by the low-
X = — écosﬂt. (10) frequencym 7o/2I'3=Q%12V2 w.
2 We also can calculate the positions of the collisions. When

they occur, we havX,=0, and the position of the collision

The dependence of the relative positigp on the time as is X,.. From Eq.(13), we obtain

obtained from our simulation is shown in Fig. 6.

The cradle features two time scales, the collision timge, rt; oo

and the time between collisionEy> 7, given by e +5, (15
2w wheret; is the time of theith collision. Hence, the corre-
ZFO_E’ (1D) sponding position is given by

corresponding to free motion under the actionkgf with xi=X.=— éco K i+ } (To+ 75)
X,=0. i c 2 T 2 0T 70

We make the approximation that during a collisioX; ( A o
>0), where the repulsive force due ¥, dominates, we ~E(—1)' sinFTt, (16)

0

neglectK.. Then, the motion is anothéshor) half-cycle
underK,, as is seen in Fig. 6. We find for the interaction where we have used the definitionXf in Eq. (10) and the

time 7, approximationl'> 7. Figure 7 shows the excellent agree-
ment between the analytical expression in Edf) and our
27 V2w simulation.
TO_E_ "o (12) The oscillation of the collision points fdd=2 is caused

by the finite elastic response of the balls. Plotting phase por-
Note thatv2w is the frequency of a single ball with a traits at different times, as shown in Fig. 8, reveals the same
doubled spring constant. characteristics we had obtained for tNe=5.
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Fig. 7. Two phase portraits that characterize the motion of\the? cradle. 02
The system slowly oscillates between the case where both balls move witt
the same speed, and the case where one ball collides with a stationary bal
The axes are made dimensionless by dividing the velocity of each ball by 0L L L L N n n
the maximum velocity of the incoming ball and the position by the initial 0 1 2 3 4 5 6 7
amplitude. Time (T,)

Fig. 9. Due to energy dissipation during the collisions, the distance between
the centers of the balls decreases in time and the balls will swing in phase.

V. THE EFFECTS OF DISSIPATION T e s,

Although the study of a dissipation-free version of New-
ton’s cradle is interesting in its own right, any realistic simu-

lation of the experiment needs to include dissipation. Two .

obvious such mechanisms are the velocity-dependent visco&%}ns' t?]ueéolthe l\é(_eltr)]cnt()j/—depen?ﬁn(tjf?rcesl N F[P]e system, we
drag of air and the viscoelastic dissipation associated Witlf[r.I ||zef et' u eé_ (|f8)arlzsvt\)/n me tﬁ 0s0 \f{e etnew e?ua—
the collisions of the balls. We chose a simple linear depen(—)'arr1 ((j)is?iga{?igr[] f?ée si#ulatieozzeThi f/aaTJz :)T?hse Eiipr)naess?erp
dence on the velocitf; = nv (Stokes law. . .
) . - . . was tested using the Euler—Richardson method for the
The inelastic character of the collisions is modeled by in-. ~. "= .
cluding a viscoelastic dissipation force of the fdfm y dissipation-free case and found to give excellent energy con-

servation.
d 4 To demonstrate the effect of the viscoelastic dissipation on
Fgiss= — Ya(f )y 17 the behavior of the system, simulations were run where the

. ] ) . Stokes term was neglectedy€£0). In Fig. 9, we plot the
into the equation of motion. Herd,is the overlap between (gistance between the two balls as a function of time. This

two balls as defined in Eq(3) and =3/2 (Hertz— sjmulation demonstrates that the final collective motion of
Kuwabara—Kono modgf® the balls that is reached experimentally is caused by the en-

The equation of motion for the dissipative Newton's ergy dissipation due to the collisions. The final amplitude of
cradle is then given by swing can be predicted in the following way.

d Consider arN-ball cradle with initially only one ball mov-
MX,=KEN_ 1 n—KER 41+ Kg(Xon—Xn) — 770 — ya(gﬁ). ing with velocity vg. The total initial kinetic energyS,
(18) = %mv% may be written as the sum of the kinetic energy due

The Stok inuall ¢ h to the motion of the center of maSg plus the kinetic energy
e Stokes term continually removes energy from the Sysq, e to the center of mass,,

tem, while viscoelastic dissipation occurs only during colli-
So=Sc*S, (19

with S;=3Nm(1/N EiN: 1v;)?. Because all velocities are zero
apart fromv;=vg, S; reduces t&5,=S,/N. From Eq.(19),
we immediately obtain

< S 20
S S=—x S (20)
g
£ Because all this relative kinetic energy will be dissipated in
g subsequent collisions, the final energy of the system is given
8 by
So
SfinaI:SO_Sr:W- (21)

The final energy of each ball, neglecting the Stokes term,
0 50 100 150 200 250 300 350 400 is simply given byE;./N?. Note that this value is inde-
Time (Lo + 7o) pendent of the coefficient of dissipation, which specifies only
Fig. 8. ForN=2, successive collisions take place in turn on the(lgftles the Fime it takes for the r_elati_ve kinetic energy to be _fu”Y
and on the right(triangles of the center of the system. The numerically dissipated and, thus, the time it takes for all balls to swing in
determined points are well described by the@gntinuous ling, Eq. (16). phase.
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Fig. 10. Loss of energy due to the Stokes damping and viscoelastic dissf-19- 12 Variation of the amplitude of ball 1 in=2 cradle with time.
pation for theN=5 cradle. They axis is made dimensionless by dividing by Shown are experimental data and results from our simulations. The experi-
the initial energy of the system mental data in Figs. 12—15 are averaged over ten runs of the experiment,

and the error in the amplitude is taken to be the accuracy of the angle
measurement- 0.25°.

For a finite value ofn, the Stokes damping constantly
removes energy from the system, causing the amplitude a@pecially constructed large protractors were used for accu-
all the balls to eventually diminish to zero. In Fig. 10, we rate measurements of the angle of swing to an accuracy of
show the variation of the total energy with time for a five- +(.25°.
ball cradle where both Stokes damping and viscoelastic dis- Qur first set of experiments investigated our prediction for
sipation are included in the simulation. Here, we see that thghe amplitude of the collective motion of the balls described
energy decays quickly to approximately one-fifth of the ini-i, sec. V. A single ball was released from an angjeonto a
tial energy, where the collective motion state is reached. o of N balls. Once the state of collective motion was
then continues to decay due to the Stokes damping. reached, we determined its amplituélg. The time required
for the system of balls to settle into the collective mode is
between 1 and 2 min. This time compares with the time of
VI. EXPERIMENTS abou 1 h for the system to come to rest.

To examine the validity of our simulations, we have car- Figuré 11 shows measurementsédgfas a function off,
ried out experiments using a specially constructed largéor N=2, 3, 'and 4. .The data are well descnbgd by
Newton’s cradle consisting of four metal baltiameter 6.8 = 6o/N, consistent with Eq(21), and our conclusion that
cm, mass 0.7 Kgsuspended from 1.3 m long wiregThe  the collisions will only remove energy of the relative motion

balls we used were commercial sand-filled metal boples.of the balls. . o
Our second set of experiments focused on energy dissipa-

tion due to the collisions of the balls. Again, a single ball was
released from an angl, and collided with a line of 2, 3, or
4 balls. We determined its amplitude after every collision

4.5 T T - —
Simulation .

Experiment —— |

3.5-{ ]

Final angle (degrees)
w IS

S8
T
1

Amplitude of ball 1 (degrees)

1r 2Ball . 27 { {
3Ball o %
T
0 \ . : ) '
0 2 4 6 8 10 1 b
Initial angle (degrees
gle (degrees) 0s | |
Fig. 11. Experimental data for Newton’s cradle witl+ 2, 3, and 4 balls. A 0 A A A A
single ball is released from an anghg. After many collisions, the balls 0 5 10 15 20
settle into a collective mode of motion where all move together with ampli- Collision Number

tude 6. . The data is well described b= 6,/N (solid line). We take the
error in the final angle of swing to be the accuracy of the protractors usedfig. 13. Variation in amplitude of ball 1 for thé= 3 cradle. The simulation
+0.25°. used the same set of parameters as for the two-ball case.
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Fig. 15. Variation in amplitude of ball 1 forld=2 cradle wih a 1 mm gap
between the rest positions of the balls. The simulation uses the same set of
parameters as for the two-ball case of Fig. 12.

Fig. 14. Variation in amplitude of ball 1 for tHd=4 cradle. The simulation
used the same set of parameters as for the two-ball case.

with its neighboring ball. The experimental data, shown in

Figs. 12—14, reveal that the textbook explanation of New-obtained in the simulations are almost identical to those ob-

ton’s Cradle with its prediction of a constant amplitude fails.tained from the simulations that incorporate small variations
To determine a value for the damping constaytthe time-  in the period of the balls.

dependence of the amplitude was determined for a single ball We also have considered the case where there is an appre-

and fitted to O(t)=6,exp(—7t/2m) to give n=6.8  Ciable gap between the balls. Figure 15 highlights the impor-

+0.136x10 4 kgs L. The constank was calculated from tance of a careful experimental setup, where instead of

Eq. (6) with E=2x 10 Pa andv=0.33 for steel and was touching, there is &x=1 mm gap between the balls when

found to bek=1.38x 101° kg m~ 25 2. they are in their rest positions. Here, we see a “beating”

The viscoelastic dissipation parameterwas then esti- effect where the amplitude of ball 1 does not simply decay,

mated by adjusting it in the simulation to match the dissipa-b”t oscillates. This behavior is well replicated by our simu-

tion seen in the two-ball experiment. The value was found td2tion-

be y=1.47x10? kgs 'm 2. This value was then used in

the three- and four-ball simulations shown in Figs. 13 and;;; coNncLUSION
14. '

We find from our simulations that the exact separation of \We have shown that the physics involved in Newton’s
the balls when a collision occurs has a very important influcradle is far from trivial and that the standard textbook ex-
ence on the behavior of the system. If balls 2—5 are initiallyplanation is only a first approximation. In the context of
in their exact equilibrium positions when they touch, the subphysics education, our study of Newton’s cradle might fulfill
sequent collisions will essentially be multiball collisions. In two purposes. Students should see that apparenﬂy simp|e ex-
such collisions, the energy dissipated is less than in a serigferiments, when closely examined, can raise a number of
of two-ball collisions. However, any experimental setup hascomplicated questions. One also should be cautious about
imperfections that will cause the system to deviate from thisyl|ly accepting well-established explanations of physical
idealization, for example, small differences in the oscillationphenomena without carefully scrutinizing the arguments.
periods of the individual balls or the balls not hanging ex-
actly at their equilibrium position.

To incorporate these imperfections into the simulation, WeACKNOWLEDGMENTS
varied the value ok for each of the balls so that the periods

of the balls vary slightly, and thus all collisions after the This work was funded by Enterprise IrelaiiBasic Re-
initial one are no longer multiball collisions. In Figs. 12—14, search Grant No. SC/2000/239/%6r one of the authorsS.

the periods of the balls vary by T=0.01 s or 1/240th of a H-) and a Trinity College Dublin Research Studentship for
period. (This variation has no noticeable effect in the two @n0therG. D.). The latter autho(G. D.) would like to thank
ball case because all collisions are two-ball collisipkghen E. J. Hinch for detailed discussions of the problem and much

this effect is incorporated, we find good agreement betweefdVice:
the simulations and the experimental data. 9Electronic add d@maths o
H H ectronic adaress: gary matnhs.tca.ie

Wedha\;etr:esl;ecljl th\?vef{eCt gfﬂ? ;atzge qf cli_ltf:[flerenc_e?_ In t.helF. Bueche Principles of PhysicsMcGraw—Hill, New York, 1986.
periods O e balls. A € Oun_ a ereis '_ € varaton N 2y sternheim and J. Kané&eneral Physics2nd ed.(Wiley, New York,
the amplitudes obtained until we choose either very small 199y,
values ofAT that approach the idealized case, or large val-*H. OhanianPrinciples of Physic§Norton, New York, 1994
ues OfAT that no |0nger represent an accurate descnpt'on ofle Mazur,Peer Instruction: A User’s Manua(Prentlce—HaII, N.J., 1997

: : : . A. B. Western and W. P. Crummettlniversity Physics, Models and Ap-
the experiment. We tested removing the multiball collisions plications (Wm. C. Brown, Dubugue, 1A, 1994

by introducing very small gapsx, between the balls in the s wiison and A. BuffaCollege Physics4th ed. (Prentice—Hall, Upper
simulation. For small values &x~0.1 mm, the amplitudes  Saddle River, N.J., 2000

1515 Am. J. Phys., Vol. 72, No. 12, December 2004 Hutaeml. 1515



E. J. Hinch and S. Saint-Jean, “The fragmentation of a line of balls by an Methods: Applications to Physical Systeriad ed.(Pearson Education,

impact,” Proc. R. Soc. London, Ser. 465 3201-3220(1999. 1996.
1. Landau and E. LifshitzTheory of Elasticity2nd ed.(Pergamon, New

8F. Hermann and P. Schilate, “Simple explanation of a well-known col-
York, 1970.

lision experiment,” Am. J. Phys49(8), 761-764(1981).
F. Hermann and M. Seitz, “How does the ball-chain work?,” Am. J. Phys. ¥D. Donnelly and J. Diamond, “Slow collisions in the ballistic pendulum: A

50(11), 977-981(1982. computational study,” Am. J. Phy31, 535—-540(2003.
19M. Reinsch, “Dispersion-free linear chains,” Am. J. Phg&(3), 271-278 An animation of the simulation can be downloaded from
(http://www.maths.tcd.ielgaryd/cradlevideo.htrl

(1994.
1y, Ceanga and Y. Hrmuzlu, “A new look at an old problem: Newton's ®D. E. Wolf, “Modelling and computer simulation of granular media,” in
cradle,” J. App. Math.68, 575—-583(2001). Computational Physi¢sedited by K. H. Hoffmann and M. Schreiber

2H. Gould and J. TobochnikAn Introduction to Computer Simulation (Springer-Verlag, Berlin, 1996 pp. 64—-95.

Thermoelectric Battery. At about the turn of the twentieth century, thermoelectric batteries were used to charge storage batteries. Theistecoitaon
number of copper and bismuth wires, connected in series. All the copper-to-bismuth connéfctiomsample are gathered together and kept at one

temperature, and the bismuth-to-copper junctions were kept at the other temperature. A gas burner placed in the center of the apparatus paisssre tem
of the junctions collected at that point and the other junctions are kept cooler through the use of radiating fins. The overall EMF depends on te number o

junctions. This piece of apparatus is at the physics department of Hobart and William Smith Colleges in Geneva, Né&hdardraph and notes by Thomas

B. Greenslade, Jr., Kenyon College
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