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We introduce and describe in detail a ‘‘virtual laboratory’’ platform to study granular materials by

combining advanced image reconstruction techniques from computed X-ray micro tomography and

discrete element method simulations. This platform allows us to directly access quantities such as forces

at the grain contacts, which would be otherwise hard to measure experimentally. We apply this

technique to the investigation of equal sized bead packings prepared experimentally by means of

different methods, and covering a broad range of packing fractions from f ¼ 0.57 to f ¼ 0.64. Results

concerning the number of contacts, the distribution of forces at contact and the relation of these

quantities with local and global packing properties are presented and discussed. This combined

approach is found to both offer the ability to improve on previous tomographic measurements of

geometric properties of the packings, and to estimate other physical properties that are not available

experimentally.
I. Introduction

Everywhere we look in nature and the modern world we find

granular matter. From sands to soils, grains to powders, our

understanding of granular systems has applications in diverse

areas of both fundamental and applied science1–3. In recent years,

large efforts and several techniques have been developed and

used to better understand the properties of these materials. In

particular one of the most important experimental innovations in

this field has been the introduction of imaging techniques such as

X-ray computed tomography (XCT),4 nuclear magnetic reso-

nance (NMR),5 confocal microscopy,6 refractive index matching7

and photoelastic methods,8 which allow scientists to directly

visualize the internal structure of granular assemblies and

measure some of their relevant properties. In conjunction with

this progress in experimental techniques, large scale computa-

tional studies have also become more tractable, with the ready

availability of increasing computational power and sophisticated

simulation tools. In this paper we describe the development of

a virtual laboratory platform that combines direct imaging data

from XCT9,10 with a computational model based on the discrete

element method (DEM).11,12

Previous computational studies of granular systems have

incorporated several simulation techniques, including Monte

Carlo type models,13 lattice models,14 energy minimisation
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methods,15 and the discrete element method.16,17 From a compu-

tational perspective, among these many models which have been

proposed and used in the literature,18 the most versatile, realistic

and nowadays common approach in use is DEM1,2,19–22 and good

agreement has been found between predictions of DEM simu-

lations and experiments.23

From the experimental side, XCT is an impressive and versa-

tile tool that provides a digital map of the internal structure of

real granular systems, with a resolution that can reach 1 mm.

However, some information such as the inter-grain forces cannot

be directly retrieved from a pure geometrical characterization of

the system structure. In this respect, DEM offers the ability to

better characterize the system under consideration, allowing

access to all its properties down to the forces on individual grains

and at inter-grain contacts. However, this is at the expense of

some simplifications of the physics that depend on the exact

details of the chosen DEM model and also the general limitation

of idealized grain geometries (perfectly spherical in this case).

In our approach, we use a tomographic reconstruction of

a real sphere packing as our starting point (see Fig. 1), and

input this experimental data (in the form of the coordinates of

the grain centers) into our DEM simulation.11,12 Specifically, we

apply this technique to a set of experiments24 concerning equal-

sized beads in air and in water prepared using different mate-

rials and methods.9,11,12,25–27 In a typical simulation, the spheres

re-arrange from the initial positions by moving only a small

fraction of their diameters to settle into the final configuration

where force and torque are balanced and the system rests in

mechanical equilibrium. By means of this numerical relaxation

we remove the experimental uncertainty about the exact loca-

tion of the sphere centers associated with the limited XCT

resolution and also we remove the uncertainty about the exact

sizes of the experimental beads associated with variations in the

grain sizes (polydispersity) and deviations from sphericity.

From the experimental bead pack, we thus produce a simulated
This journal is ª The Royal Society of Chemistry 2010



ideal mono-disperse sphere packing, a ‘virtual packing’, that

matches the original geometry of the experimental bead pack and

that can now be used to compute with precision several static and

dynamical properties which are otherwise not directly accessible

from experiments. In this paper we describe this virtual platform

and demonstrate its application by investigating several prop-

erties of granular packings, including: the number of grains in

contact, the distribution of forces at contact and the relation

between these properties and the local and global packing

fractions.

The paper is organized as follows. In section II, we briefly

describe the experimental methods and materials. In section III,

the main equations and methods implemented in the DEM

simulations are reviewed. In section IV, the parameters used in

the dynamical relaxation of the experimental samples are

provided and the relaxation dynamics are described. In section

V, we discuss changes in the radial distribution function between

the original experimental samples and the DEM relaxed data. In

section VI, the number of contacts in the DEM relaxed systems

are studied in detail and a comparison with previous estimations

by means of a different method is discussed. In section VII, we

investigate the relation between the number of contacts and the

packing fraction both locally and globally, discussing the validity

of theoretical predictions. In section VIII, the isostatic condition

is discussed and the minimal size of clusters satisfying the

isostatic condition is investigated. In section IX, we report the

distribution of the number of contact per sphere and we provide

a simple statistical mechanics derivation of these distributions. In

section X, we investigate the distribution of normal forces at

contact and discuss the relation with local packing properties.

Finally in section XI, conclusions and perspectives are provided.
II. Experiments

We use the AAS database on disordered packings24 which

contains structural data from experimental sphere packings

obtained by X-ray computed tomography.
Fig. 1 Combined tomographic and DEM reconstruction of a sphere

packing. The inner spheres that are part of the DEM simulation are

rendered opaque whereas the fixed boundary spheres are rendered

translucent. Images are for the F sample with 6856 spheres in the internal

region. The entire sample is shown (left) and also the sample with one

quarter removed (right) to better show the internal structure of the

packing.
A. Dry acrylic beads in air

Specifically, we analyze 6 samples (A–F) composed of dry acrylic

beads in air poured (by hand) into a cylindrical polycarbonate

container with an inner diameter of 55 mm and filled to a height

of �75 mm.9,25,28 To reduce boundary effects, the inside of the

cylinder was roughened by randomly gluing spheres to the

internal surface. Samples A and C contain �150 000 beads with

diameters d ¼ 1.00 mm and polydispersity within 0.05 mm.

Samples B, D–F contain �35 000 beads with diameters d ¼ 1.59

mm and polydispersity within 0.05 mm. The two samples at

lower packing fraction (A, B) were obtained by placing a stick in

the middle of the container before pouring the beads and then

slowly removing the stick.21 Sample C was prepared by gently

and slowly pouring the spheres into the container, while sample

D was obtained by a faster pouring. In sample E, a higher

packing fraction was achieved by gently tapping the container

walls. The densest sample (F) was obtained by a combined action

of gentle tapping and compression from above (with the upper

surface left unconfined at the end of the preparation). The

geometrical investigation of the packing structure was performed
This journal is ª The Royal Society of Chemistry 2010
over a central region at 4 sphere-diameters away from the sample

boundaries. These were the first samples analyzed28 and this kind

of preparation ‘‘by hand’’ was devised to mimic the real-world

handling of granular materials, since as discussed in ref. 25, we

were interested in properties that are little affected by the details

of the preparation. However, we have been aware that this kind

of preparation method might produce misleading non-repro-

ducible results. For this reason we devised a second set of

experiments where, on the contrary, the experimental handling is

highly controlled and the outcomes readily reproducible.

B. Glass beads in water

This new set of experiments uses a fluidized bed technique.27,29

This technique is typically comprised of a vertical column con-

taining a fluid and a bed of granular material supported on

a porous plate through which the fluid can flow upwards. During

a flow pulse the grains expand and the particles move upward

randomly. After the pulse ends, the bed sediments down into

a new mechanically stable configuration. Packings created in this

way are in a stationary state, with packing fractions that have

average values which depend on the flow rate, with lower packing

fractions obtained for higher flow rates (larger bed expansions).

In this paper we analyze 12 samples (FB14-24 and FB27)

prepared by means of this technique. These samples contain

about 150 000 glass beads with diameters 0.25 mm placed in

a vertical polycarbonate tube with an inner diameter of 12.8 mm

and a length of 230 mm. The packings were prepared in

water.24,26,29 Packing fractions between 0.56 and 0.60 were

obtained using different flow rates.

C. X-Ray computed tomography imaging

We use X-ray computed tomography (XCT)4 to calculate the

coordinates of the bead centers. The outcome of an XCT scan is

a three dimensional density map,67 discretised in space as a set of

voxels (3-dimensional volume element analogous to the 2-

dimensional pixel). Providing the granular material has
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a different X-ray attenuation than the surrounding media, then

the map reveals the discretized 3-dimensional shape of the grains.

In the facility at the Australian National University that we used

for these experiments,30,31 the highest resolution is around 1 mm,

with the 3-dimensional map consisting of 20243 voxels. Our XCT

apparatus uses a cone beam geometry30,31 and the actual reso-

lution in a given experiment depends on the relative position of

the sample with respect to the X-ray source. Specifically the voxel

side size in our sets of experiments are: 0.0399 mm (samples A,

C), 0.0516 mm (samples B, D, F) and 0.0172 mm (for all the

FB14-24, FB27 samples). The use of spherical grains of equal

sizes highly simplifies the image processing because it is necessary

to retrieve only the information concerning the grain center. This

is done by applying a convolution method over the three-

dimensional XCT density map and this is made algorithmically

very efficient by using (parallel) fast Fourier transform.

Furthermore, in combination we used the watershed method32

(which is a segmentation algorithm based on the image topology)

to identify distinct grains. The resulting bead positions are

estimated with a sub-voxel precision better than 0.1% of the

beads diameters. Indeed, the position of the center of mass

can be estimated with higher precision than the size of the voxels

in the density map because these coordinates are calculated

as a center of mass of the digitalized bead volume that

contains several hundreds voxels. This precision is well below the

beads’ polydispersity which is between 1% and 3% considering

both changes in the bead sizes and deviations from perfect

sphericity.68

III. Simulation

The discrete element method (DEM) has been employed exten-

sively in simulations of granular systems1,2,11,12,19–21 and here we

employ it to simulate a system of frictional, viscoelastic grains

under the influence of gravity (g ¼ 9.81 ms�2). Grains interact

only in compression, with a normal repulsive force Fn accord-

ingly with Hertz’s theory33

Fn ¼

8<
:

knx3=2
n for xn $ 0;

0 for xn \0

(1)
Fig. 2 Variation of the barycenter height (in units of d) during a DEM rela

fraction in the fluidized bed experiments (sample FB18) and the right plot is

(sample F).
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with xn ¼ d � |ri � rj|, where d is the sphere-diameter and ri and rj

are the positions of the grain centers.20,34,35 The spring constant

kn is related to the Young’s modulus E and Poisson’s ratio n of

the grains, with kn ¼
d1=2E

3ð1� n2Þ. We also consider the tangential

force Ft under oblique loading with

Ft ¼ �ktx
1/2
n xt, (2)

where xt is the elastic tangential displacement between spheres,

obtained by appropriately integrating the tangential relative

velocities during the lifetime of the contact, subject to the

constraint that xt is truncated such that Ft cannot exceed the

Coulomb friction criteria |Ft| # m|Fn|.19,36,39 For the simulations

presented here we take the commonly used approach of setting

kt ¼
2

7
kn such that the normal and tangential characteristic

collision times are equal.37,38 We also include a normal visco-

elastic dissipation

Fn ¼ �gnx1/2
n

_xn (3)

where _xn is the normal velocity. A viscous friction force is also

included in the model38

Ft ¼ �gtvt, (4)

where yt is the tangential component of the relative grain

velocity. The values used for kn, kt, gn and gt are discussed in the

next section.u
IV. DEM relaxation of experimental samples

In order to eliminate the unavoidable experimental incertitude in

the bead positions, sizes and shapes, we reconstruct a numerical

sample of equal spheres. This is done by performing a DEM

relaxation simulation, initialised from the experimental bead

coordinates measured by XCT imaging.

The DEM simulation is performed on a set of unfixed spheres

in the central region of the sample, with the boundaries provided

by the outer spheres which are kept fixed at the positions

measured via XCT experiment. Three layers of spheres are
xation simulation. The left plot refers to the sample with lowest packing

the sample with the highest packing fraction in the dry beads experiment
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removed from the top of the unfixed sphere set allowing the

spheres to rise freely in height if necessary. We use realistic

physical parameters for acrylic beads having: Young modulus

3.2 GPa; Poisson ratio 0.3; density 1150 kg/m3; and inter grain

static friction coefficient 0.28. Samples A,C have radius 0.5 mm

whereas samples B,D,E,F have radius 0.795 mm. For the glass

beads we used: Young modulus 70 GPa, Poisson ratio 0.2;

density 2500 kg/m3; inter grain wet static friction coefficient 0.9

and radius 0.125 mm. All the simulations use a simulation time

step equal to Dt ¼ 10�7 s.

To ensure a purely quasi-static relaxation, large values of the

normal and tangential dissipation parameters gn and gt were

used. Values in the range from gn ¼ gt ¼ 10 to 100 were

considered, with the properties of the relaxed structure being

found to be insensitive to the exact choice of value. We also
Fig. 3 The data refer respectively to (left plots: a,c,e) the sample with lowest p

plots: b,d,f) the sample with the largest packing fraction in the dry beads expe

(e,f) show the detail of the second and third peaks. The ‘+’ symbols refer to X

peaks become sharper in the DEM relaxed systems.

This journal is ª The Royal Society of Chemistry 2010
verified that during the relaxation process grains keep an average

number of contacts larger than 4. Essentially, the relaxation

dynamics consists in a re-equilibration of the elastic stress trap-

ped in the grain overlaps in the initial configurations which are

unphysical and unbalanced and are due to the experimental

uncertainties on the grain positions, grain polydispersity and a-

sphericity. The viscoelastic dissipation and viscous friction

remove energy from the system until the spheres have all settled

down to a stationary state. We consider that the system has

achieved a stationary condition when kinetic energy is below

10�10 times the maximum value (reached shortly after the

beginning of the relaxation) and when overlap energy is

unchanged up to the 15th digit.

Fig. 2 shows the variation in the average height of the grains as

the simulation proceeds. Typically during the DEM relaxation
acking fraction in the fluidized bed experiments (sample FB18) and (right

riment (sample F). Figures (c,d) show the detail of the first peak. Figures

CT data and the ‘B’ symbol to DEM relaxed systems. It is clear that all
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there is initially a small expansion of the system, with the height

increasing by a fraction of percent of the initial height. The final

average height of the grains is within 0.1%–0.2% of the initial

average height (the average height is taken measuring the

distance, in units of d between the lowest mobile sphere and a top

layer of the 30 highest mobile spheres). The average displacement

of the centers of the spheres during the relaxation process is less

than 5% of the sphere diameters.

It is important to stress that in the simulations the stationary

state is reached in less that a second (simulation time) with the

spheres moving only a small fraction of their diameters. Such

a short simulation time allows us to relax these rather large

systems using realistic stiffness values.
V. Radial distribution function

A classical quantity widely used to characterize the structural

organization of packings is the radial distribution function g(r)

which is associated to the probability of finding the center of

a sphere in a given position at a distance r from a reference

sphere. This quantity is calculated by counting the number of
Fig. 4 Average number of sphere centers within a distance r from the centre o

at r ¼ d whereas the original XCT data (squares) reveal a smoother transitio

fluidized bed experiments (sample FB18) and right to the sample with the larg

z(r) for the XCT experimental data does not vanish until a few per-cent below

about 5% for the acrylic beads and 3% for the glass beads.

Fig. 5 The rate of variation of the number of neighbours vs. radial distance

scale in the region r ˛ [d, 1.4d]). (Left) Fluidized bed sample FB18; (right) d

packing fraction (see Fig. 6). The straight lines are the best fits in the region
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sphere centers within a radial distance r from a given sphere

center (z(r), see Fig. 4) and using the equation69

zðr1Þ � zðr0Þ ¼
ðr1

r0

gðrÞ4pr2 dr: (5)

Although there are more specific and better devised methods

to investigate and characterize the geometrical organization in

disordered packings,25 the comparison between g(r) from the

original and the DEM relaxed samples is a good way to measure

average variation in the internal structure. Fig. 3 shows the radial

distribution function g̃ (r) (which has been normalised such that

g̃ (r)/1 for r/N) for both the DEM relaxed samples and the

original tomographically obtained data. We observe that both

sets of data show a peak at r¼ d, which is however much sharper

in the DEM simulation. We also observe two peaks at r ¼
ffiffiffi
3
p

d

and r x 2d, which are again sharper in the DEM simulation but

they preserve the overall characteristics of the experimental data.

This is a strong indication that there are essentially no differences

between geometrical properties in the original experimental

samples and in the DEM relaxed samples except for the acquired
f a sphere. The DEM relaxed samples (circles) reveal a sharp discontinuity

n. The left plot refers to the sample with lowest packing fraction in the

est packing fraction in the dry beads experiment (sample F). The fact that

r ¼ d is consistent with the grain polydispersity which is indeed estimated

shows power law behaviors: vz(r)/vr ¼ (r � d)a�1 (linear trend in log–log

ry acrylic sample F. The exponent depends on sample preparation and

r ˛ [d, 1.4d].
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uniformity of the sphere diameters. We must stress that the

appearance of these peaks does not necessarily indicate any

presence of translational order, they are simply associated with

repetition of structural motifs. This point is discussed in ref. 25.
A. Power law increase in the number of neighbors

The average number of neighbors z(r) that are within a given

radial distance r from a sphere centre in the packing is a quantity

directly related to g(r) through eqn (5). For a packing of perfect

non-overlapping spheres, z(r) must be identically equal to zero

for any r < d and then it must jump to the number of neighbors in

contact zc at r ¼ d. In Fig. 4 we can see that z(r) from the

experimental samples has a smooth increase in value beginning at

distances up to 5% below r ¼ d. A very different behavior is

revealed by the DEM relaxed samples where a jump to zc is

clearly visible at r ¼ d.

For larger distances, z(r) keeps growing smoothly as other

centers from nearby spheres that are not in contact become

counted. It has been pointed out in the literature40,41 that, in

a region after the jump at r ¼ d, the number of neighbors within

a given radial distance z(r) increases with the distance r accord-

ingly with the law (for r ˛ [d, 1.4d]):

z(r) ¼ zc + z1(r � d)a (6)

which implies

vzðrÞ
vr
¼ z1aðr� dÞa�1

(7)

It has been argued that such a power law behavior has inter-

esting relations with the statistical physics of these systems and it

is related to the dynamical arrest at the jamming transition.41–43

Fig. 5 reports vz(r)/vr vs. r for the two samples with respec-

tively the smallest and largest packing fractions (FB18 and F). As

one can see both the samples show a good linear trend in the log–

log scale revealing that eqn (7) is followed. Similar behaviors are

observed for all samples. However, we find that the exponents

a are not universal. Indeed, they change with packing fraction

and depend on the sample preparation as shown in Fig. 6. This is

in apparent contradiction with the results and discussions in ref.
Fig. 6 Exponent a vs. packing fraction for all the samples. The error

bars represent 95% confidence interval over the estimation of a from

linear regression. Here the triangles ‘8’ refer to all the fluidized bed

samples and the circles ‘B’ to the dry acrylic bead samples.

This journal is ª The Royal Society of Chemistry 2010
15,40,41 where lower values of the exponents are found and

a ‘universal’ value of a ¼ 0.5 is suggested. However, it must be

stressed that numerical results in ref. 40 uses hard sphere

potentials and ref. 15,41 refer to non-frictional spheres. These are

systems that can jam only at packing fraction 0.64. On the

contrary, our system is frictional and therefore it is different from

the system studied in15,40,41, furthermore, from Fig.6 one can see

that our data are consistent with a ¼ 0.5 at F ¼ 0.64.
VI. Number of contacts

The average number of neighbors in contact with any given

sphere in the packing (zc) is a simple and important measure of

the system’s topological structure which has been used since the

first investigation of these systems.21,45–55 This quantity has

recently become central in the theoretical description of granular

systems by means of statistical mechanics arguments.44 The

estimation of this quantity from geometrical structural

measurements is extremely problematic because grains can be

infinitesimally closed but not in mechanical contact. This

problem can only be solved if one can measure the forces between

grains. Direct observation of the stress with photoelastic mate-

rials is possible but it is extremely challenging in three dimensions

and, to our knowledge, there is still no available data. On the

other hand, with tomographic data we cannot measure directly

the forces between grains, however by DEM relaxing the systems

we can. Indeed, one of the main initial motivations for the

present study was to provide a precise measurement of the

number of grains in contact.

Fig. 4 shows the comparison between z(r) from the DEM

relaxed samples and the original tomographic data. It is clear that

the determination of the average number of neighbors in contact

(often referred in the literature as ‘coordination number’) from the

original experimental data is an extremely difficult task because

the data has a slow smooth increase in the number of neighbours

over a range of r ¼ 0.97d/1.02d. Conversely, the DEM relaxed

samples show a much sharper increase in the number of neighbors,

with a discontinuity at r x d giving a good estimate of the actual
Fig. 7 Average number of neighbors in contact vs. packing fraction for

all the experimental samples: fluidized bed ( 8) and dry acrylic beads

(B). The dashed line is the theoretical prediction from ref. 44

zc ¼ 2
ffiffiffi
3
p

F=ð1�FÞ. The symbols V refer to two samples (B and F)

relaxed with a larger friction coefficient (m ¼ 0.9 instead of 0.28).

Conversely, the symbols D refer to samples B and F relaxed with a smaller

friction coefficient (m ¼ 0.2).

Soft Matter, 2010, 6, 2992–3006 | 2997



Table 1 Details for the internal region of the DEM relaxed fluidized bed samples: number of internal mobile spheres (N), packing fraction (F), average
number of neighbors (zc), fraction of contacts that cannot hold extra tangential force (q), prediction for the isostatic condition from eqn (15) (zISO),
critical size (l*) in units of d

Sample N F zc q zISO l* Sample N F zc q zISO l*

FB18 6857 0.5738 4.70 0.026 4.04 11.8 B 7041 0.5971 4.88 0.150 4.21 11.6
FB17 7242 0.5756 4.69 0.027 4.04 10.7 A 6922 0.5997 4.90 0.163 4.23 11.0
FB15 7041 0.5778 4.71 0.025 4.03 10.3 C 6804 0.6148 4.89 0.143 4.20 9.8
FB14 6922 0.5780 4.70 0.027 4.04 9.2 D 7242 0.6258 5.05 0.162 4.23 8.7
FB20 6746 0.5785 4.69 0.022 4.03 9.4 E 6857 0.6288 5.03 0.152 4.21 9.4
FB16 6804 0.5806 4.71 0.029 4.04 10.4 F 6856 0.6367 5.05 0.169 4.24 9.3
FB19 6856 0.5824 4.72 0.030 4.04 11.6
FB21 6927 0.5851 4.74 0.027 4.04 10.7
FB22 6944 0.5877 4.75 0.028 4.04 10.3
FB23 6890 0.5935 4.78 0.028 4.04 10.3
FB27 7214 0.5991 4.86 0.030 4.04 10
FB24 7054 0.6039 4.89 0.031 4.04 9.3
average number of contacts zc. Such an estimate of the number of

contacts for all the DEM relaxed samples is shown in Fig. 7. We

observe a linearly increasing trend in the number of contacts with

the packing fraction with the two extremes being zc � 4.7 at F �
0.57 to zc� 5.0 at F� 0.64. We also observe little dependence on

the preparation method with the fluidized beds and dry bead

samples having comparable values at the same packing fractions.

Table 1 reports the values of zc and F.
A. Number of near neighbors

Beside the spheres in contact, there are a large number of other

spheres that are near but do not touch. These ‘near neighbors’

certainly play a significant role in the formation of the actual

packing configuration and provide the necessary environment to

guarantee mechanical stability upon small perturbations. There

is however some arbitrariness in counting such neighbors.

Indeed, as clearly visible from Fig. 4, there is a steep increase in

the number of sphere centers with radial distances immediately

above r ¼ d.

An interesting perspective on the analysis of the number and the

role of near neighbors has been recently proposed in ref. 44 by using
Fig. 8 (Left, a) Modified radial distribution function gz(r) (see text). The six

curves below concern the fluidized bed systems. (Right, b) Number of near con

is z ¼ 2
ffiffiffi
3
p

F=ð1� FÞ.44 As in the previous figures, the triangles ‘8’ refer to flu

symbols V refer to two samples (B and F) relaxed with a larger friction coef

relaxed with a smaller friction coefficient (m ¼ 0.2).
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a modified radial distribution function which counts the average

value of the number of grains in contact with a spherical surface

radius r renormalized by the factor (d/2)2/r2 (which is the ratio

between surface area of a bead and the surface area of a sphere of

radius r). In our notation such a quantity is (for r $ d/2):

gzðrÞ ¼
d2

4r2
½zðrþ d=2Þ � zðr� d=2Þ� (8)

At r¼ d/2 this quantity coincides with zc¼ z(d), but then it has

the peculiar property of showing a maximum at a radial distance

which is very near (within a fraction of percent) to the contact

point. Such a behavior is shown in Fig. 8. From a mathematical

perspective such a maximum is the consequence of the power law

growth of z(r) (see eqn (6)) which combined with the factor 1/r2

gives first a growing trend near r ¼ d/2 and then a decreasing

behavior at larger r. The location of such a maximum depends on

the parameters zc, z1 and a, but the typical position is within 0.5%

from r ¼ d/2. Indeed, from Fig. 8a, it is clear that in our samples

the position of the maximum of gz(r) varies in a relatively narrow

range between r � d/2 ¼ 0.0035 and r � d/2 ¼ 0.0065.

It has been argued in ref. 44 that a good estimation of the

neighbors in near contact is given by gz(r) at r � d/2 ¼ 0.004d. In
higher curves above refer to the acrylic bead system whereas the 12 lower

tacts estimated from the value of gz(r) at r� d/2¼ 0.004d. The dashed line

idized bed samples and the circles ‘B’ to the dry acrylic bead samples; the

ficient (m ¼ 0.9 instead of 0.28); the symbols D refer to samples B and F

This journal is ª The Royal Society of Chemistry 2010



Fig. 8b this estimation of the number of near contacts is shown as

function of the sample packing fraction. In Table 2 the values are

reported together with the maximal values of gz(r) in the prox-

imity of r/2.

Based on these results, it appears that aside from the number

of actual contacts zc, which is a well defined quantity, there isn’t

any clear instrument to unequivocally identify the near neighbors

which are relevant to physical properties of the packing. From

a geometrical perspective this is an ill-posed problem because

there isn’t any natural cut-off distance beside the sphere sizes.

However, from a dynamical perspective there might be a ‘‘region
Fig. 9 Two examples for samples FB18 (a,c) and F (b,d) of the estimation of

In (a,b) the symbols ‘+’ are the values of z(r) from XCT experimental data and

‘+’ report the differences z(r + dr) � z(r) with dr ¼ 0.000743d as measured fro

best fitting the data for r < d.

Table 2 Estimation of the neighbors in contact (zDE) computed by means of th
computed from gz(r) at r � d/2 ¼ 0.004d and from the maximum of gz(r). Th

Sample zDE gz(0.004d + d/2) max(gz(r)) zc

FB14 5.60 4.91 5.29 4.70
FB15 5.70 4.88 5.28 4.71
FB16 5.30 4.88 5.30 4.71
FB17 5.40 4.89 5.29 4.69
FB18 5.00 4.86 5.25 4.70
FB19 5.30 4.89 5.31 4.72
FB20 5.80 4.86 5.29 4.69
FB21 5.80 4.92 5.32 4.74
FB22 5.70 4.92 5.36 4.75
FB23 5.90 4.96 5.43 4.78
FB24 5.90 5.06 5.63 4.89
FB27 6.00 5.02 5.54 4.86

This journal is ª The Royal Society of Chemistry 2010
of influence’’ where neighboring spheres might become in contact

with the central one when the system is infinitesimally perturbed.

In principle, this can be tested with simulations and will be the

topic of a future work.
B. Comparison with deconvolution method

In a previous paper9 the average number of grains in contact was

estimated by means of a deconvolution method using an error

function to fit the experimental z(r) in the region r < d and

assuming that the observed smooth increase is due to the grain
the number of spheres in contact by means of the deconvolution method.

the lines are the error functions that best fit the data. In (c,d) the symbols

m XCT experimental data. The lines are the normal distributions that are

e deconvolution method (see Table 1 in ref. 9). Number of near neighbors
e number of actual contacts zc are also reported for comparison

Sample zDE gz(0.004d + d/2) max(gz(r)) zc

A 5.81 5.26 5.75 4.90
B 5.91 5.25 5.76 4.88
C 6.77 5.34 6.09 4.89
D 6.78 5.55 6.33 5.05
E 6.95 5.58 6.39 5.03
F 6.97 5.61 6.56 5.05
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polydispersity. Fig. 9 shows that this method captures well the

typical distribution of distances in the region r < d. However,

from Table 2, where the values of the number of contacts per

sphere computed by means of this deconvolution method (zDE)

are compared with zc, it is evident that this method largely

overestimates the number of actual contacts. This is probably

due to the fact that in the presence of polydispersity grains that

are not in contact can stay at a relative distance smaller than d.

Interestingly the numbers retrieved in ref. 9 were in good

agreement with several experimental estimations46,47 pointing out

the need for better experimental methods to directly access this

quantity.
VII. Local relation between packing fraction and
number of contacts

We have seen that the average number of contacts zc for the

whole packing increases almost linearly with the packing frac-

tion. In a previous paper56 it was pointed out that, at the grain

scale, the number of contacts and the packing fraction are also

locally related. Fig. 10 reports the average number of contacts hzi
for spheres at a given local packing fraction f. The local packing

fraction f is calculated by computing the fraction between the

volume of a sphere Vs ¼ pd3/6 and the volume V of the Voronoi

cell around the sphere, i.e. f ¼ Vs/V. Note that the global

packing fraction (F) is retrieved similarly from F ¼ Vs/hVi. Let

us stress that the quantities reported in Fig. 10 are different from

the ones in Fig. 7, indeed Fig. 10 refers to a local relation and not

to the relation for the whole packing.

An analytical approach in ref. 44 proposes the following

relation:

�
z
�
¼ 2

ffiffiffi
3
p f

1� f
(9)

In Fig. 10 this analytical prediction is compared with the data

for all the fluidized beads and dry samples. One can see that

significant deviations are observed. Note that the large error bars

in the figures are not reporting an uncertainty on the measure,

which is exact in this case, but are visually showing the spread of

the distribution of the contact number per sphere at a given local

packing fraction. We discuss such a distribution in detail in Sec. 9.
Fig. 10 Local relation between the average number of neighbors in contact hz

and (b) the dry acrylic beads samples. The bars report the standard deviation

behavior from:44 hzi ¼ 2
ffiffiffi
3
p

=ð1=f� 1Þ. Volumes are binned into 24 discrete e
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VIII. Comparison with isostatic condition

The samples considered here are in a mechanically stable state.

This applies to both the experimental samples that were

measured at rest and to the DEM relaxed samples that were

allowed a sufficiently long time to achieve the dynamical arrest of

all grains. From a simple counting of the number of degrees of

freedom with respect to the number of constraints one can infer

the minimum expected average number of contacts per grains

that can allow mechanical stability. Samples exactly satisfying

such a counting are generally referred to as being at the isostatic

condition. One must stress that it has been mathematically

proven that such a counting does not provide either a sufficient

or a necessary condition for stability.21 Nonetheless, the isostatic

condition gives a good indication of the approximate value of

contacts above which one can reasonably expect to find

mechanically stable packings.

In our samples we have frictional spheres with rotational

degrees of freedom that interact with both normal and tangential

forces. The forces are the free variables of the problem that are

subject to the constraints of zero total force and zero total torque

acting on each grain. Normal forces have directions determined

by the position of the grains, and therefore they account for only

one scalar variable per contact, counting to:

Nn ¼ zc

N

2
(10)

Tangential forces act in the plane between the two spheres, in

general they have D � 1 components (here D ¼ 3 is the space

dimensionality). However, some contacts can be at the slipping

threshold where Ft ¼ mFn and they cannot hold any extra

tangential load in that direction, in this case the number of

independent components is reduced by one becoming D � 2 ¼ 1.

Overall the total number of variables associated with tangential

forces is:

Nt ¼ zc

N

2
½ðD� 1Þð1� qÞ þ ðD� 2Þq� ¼ zc

N

2
ðD� 1� qÞ (11)

where q is the fraction of contacts at the slipping threshold that

cannot hold any extra tangential load, conversely 1 � q is the

fraction of contacts that are below the slipping threshold. The

force balance must be satisfied for each grain and for each
i and the local packing fraction f¼ Vs/V for (a) the fluidized bed samples

of the distribution sz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2i � hzi2

q
. The dashed line is the theoretical

qual intervals. The choice of binning has very marginal effects.
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component of the force acting on the center of mass, and thus the

number of equations for force balance is:

Ef ¼ DN (12)

Whereas the number of equations for torque balance is:

Et ¼
DðD� 1Þ

2
N (13)

The balance between number of variables and number of

equations is:

Nn + Nt ¼ Ef + Et (14)

resulting in the following condition for the average number of

contact per grain at the ‘isostatic limit’:

zISO ¼
DðDþ 1Þ

D� q
¼ 12

3� q
(15)

It is clear that this implies 4 # zISO # 6 depending on the

fraction q of contacts that are at the slipping threshold. This

number can be computed from the DEM relaxed samples and the

values of q for all the samples are reported in Table 1. We observe

that there is a sizable fraction of contacts at the slipping

threshold with a larger fraction (about 15%) in the dry bead

samples with respect to the fraction in the fluidized beds samples

(about 3%). This is due to the larger value of the friction coef-

ficient in the fluidized bed samples. It is indeed clear that q should

depend on friction with the limit q/1 associated with the

limiting case of infinitesimally small friction coefficients and

conversely the limit q/0 associated with the limiting case of very

large friction coefficients. Overall we see from Table 1 that all

samples are ‘hyperstatic’ with values of zc always considerably

larger than the corresponding zISO. Let us note that infinitesimal

variations might change the state of a contact at the slipping

threshold into a non-slipping one and vice versa. However, the

average number of contacts at the slipping threshold turns out to

be a well defined quantity which is robust to infinitesimal

perturbation of the system. This has been tested numerically by

following the evolution of q over the whole simulation time. We

indeed observed that q reaches values which are within 1% of the
Fig. 11 (Left) Distribution of the neighbors in contact for all the experimen

function in eqn (16) with best fitting values for the parameter z*. (Right) Sam

This journal is ª The Royal Society of Chemistry 2010
final measured value after about half of the simulation time, well

before the packing has reached dynamical arrest.

In the previous calculation for the isostatic limit we ignored the

effect of the boundaries. On the other hand, boundaries are

essential to hold the structure in place and cannot be ignored. We

will expand on this issue in the next section.

A. Critical cluster size

In these packings, mechanical stability is induced by the boundaries

that literally hold all the sample in place. Let us now imagine to

extract an internal cluster of spheres and investigate whether it can

be mechanically stable under compression and/or shearing occur-

ring at its boundaries. In this case, only the contacts between the

grains inside the cluster contribute to stability. For such a cluster,

the average number of internal–internal contacts per grain is

smaller than zc because one must subtract the contacts with grains

external to the cluster. For large clusters this number will converge

towards zc but for small clusters it could be considerably lower than

zc and even become smaller than zISO. The mechanical stability of

sub-parts of the packing can be inferred by dividing the entire

sample in a grid of cubic cells of edge-size l and looking at the

average internal–internal number of contacts inside each of these

cells. The smallest cluster size l* where the average number of

internal–internal contacts per grain is larger than or equal to zISO,

can be considered as the ‘critical’ size. Table 1 reports the critical

sizes l* for all samples. As one can see they vary in a range between 9

to 12 sphere diameters. This critical size is an estimate of the size of

the smaller cluster which might still act as a rigid body upon

external perturbations, below this size the system is likely to be

locally in a mechanically unstable state and, in the sample, it is

actually held in place by the presence of static neighbors. As

mentioned before, the isostatic condition is neither a sufficient nor

a necessary condition for stability21 and therefore this criteria is

only providing an indication for the critical size. A precise formu-

lation of the problem, requires the complete analysis of the stability

problem57,58 but this goes beyond the purpose of the present paper.

IX. Distribution of the number of contacts

The average number of neighbours in contact with a given grain

is an important quantity. However, from a grain perspective, we
tal samples: fluidized bed ( 8) and dry acrylic beads (B). The line is the

e plot shown on a semi-log scale.
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Fig. 12 (Left) Distribution of the neighbors in contact for all the experimental samples: fluidized bed ( 8) and dry acrylic beads (B). The lines are the

function in eqn (17) with z* ¼ 4=ð2�
ffiffiffi
3
p
Þ � 14:9 and the best fitting values of l. (Right) Same plot shown on a semi-log scale.
see that spheres are in contact with variable numbers of neigh-

bors with a probability that follows a distribution which is

reported, for all samples, in Fig. 11 and 12. As one can see, these

distributions are ‘‘bell-shaped’’ with a number of contacts that

range from a minimum of 2 to a maximum of 12. The problem

that we briefly address in this section is the statistical mechanics

mechanism that might be at the origin of this distribution.

Let us here introduce a simple ‘free volume theory’ which is

formally similar to the free volume theory for a gas in a given

volume59 but applied to the spheres in contact with a given

sphere. Let us consider the total solid angle around a sphere 4p

as a ‘volume’ which is locally filled by the neighboring spheres

each occupying a solid angle U. In such a system, if we have z

spheres in contact, each sphere has access to a maximum portion

of the solid angle equal to 4p � zU. In the ‘microcanonical’

ensemble the partition function of a ‘gas’ of z of such particles is

W(z) ¼ (4p � zU)z/z!. The probability to have a configuration

with z neighbors is therefore consistently p(z) ¼ W(z)/
P

z0W(z
0
)

which can be written as:

pðzÞ ¼ c

Gðzþ 1Þ

�
4p

z* � z

z*

�z

(16)

where we introduced the symbol z* ¼ 4p/U, which is the upper

bound for the number contacts, and c is a renormalization

constant such that
P

zp(z) ¼ 1. In Fig. 11 the distribution of the

number of neighbors in contact for all the samples are reported.

The lines are the plot of eqn (16) where the best fits for z* are

used. The resulting best fit values are in a narrow range between

14 and 15. As one can see, the theoretical prediction is very

satisfactory, describing well the overall behavior except for the

probability for z ¼ 2 which is smaller than expected from eqn

(16). This is not surprising as the theory ignores mechanical

stability. In our systems, that include friction, two frictional

contacts can be sufficient to hold a grain in place. However, it is

rather unlikely that grains spontaneously jam in these configu-

rations, and our simple theory over-estimates their occurrence in

real packings.

The use of z* as a free fitting parameter is reasonable given that

different packing strategies affect differently the likelihood of

filling the solid angle around a sphere. However, in a strict

mathematical sense, the free volume occupied by a touching
3002 | Soft Matter, 2010, 6, 2992–3006
sphere is U ¼ 2p½1� cosðp=6Þ ¼ pð2�
ffiffiffi
3
p
Þ

�
and therefore

z* ¼ 4=ð2�
ffiffiffi
3
p
Þ � 14:9. An alternative approach is considering

z* fixed and instead taking into account the different packing

characteristics by using a sort of ‘chemical potential’ that gives

a weight for the likelihood for a sphere to come in contact with

another sphere. This alternative framework is equivalent to the

‘grand canonical’ ensemble (at b¼ 0) and the ‘chemical potential’

is a Lagrange multiplier l that controls the average number of

neighbors in contact. The expression for the probability

becomes:

pðzÞ ¼ c

Gðzþ 1Þ

�
4p

z* � z

z*

�z

expð � lzÞ (17)

where c is a renormalization constant such that
P

zp(z) ¼ 1 and,

in this case, z* ¼ 4=ð2�
ffiffiffi
3
p
Þ. Fig. 12 shows that this alternative

approach is also very effective in describing the distribution of

the number of neighbors. The estimated values of l vary in

a range between 0.12 to 0.31 following an almost linear

decreasing trend with packing fraction.
X. Distribution of forces and pressure

Understanding how stress distributes in these systems is of

great relevance to unveil the mechanisms underneath mechan-

ical stability and the jamming transition in these complex

materials.

Let us first note that the topological properties of these

samples are rather insensitive to the relative depth of the grains in

the sample. An example is given in Fig. 13 where the average

number of neighbors and the standard deviation of the distri-

bution are plotted for several layers at different depths, showing

that these quantities rest almost unchanged. A different behavior

is instead observed for the average normal force in each layer. At

increasing depths, the force increases due to the larger weight of

the grains above. We take this effect into account in the following

discussion.

Fig. 14 reports the distribution of the normal forces between

grains measured in an internal part of the sample 4 sphere

diameters away from the boundaries. We observe that a large

fraction of contacts are carrying small forces and conversely

a small fraction of contacts carry large forces. When plotted in
This journal is ª The Royal Society of Chemistry 2010



Fig. 13 (Left) Average number of contacts per grain vs. depth. The error bars represent the standard deviation. (Right) Average rescaled force vs. depth.

Symbols: triangles ‘8’ fluidized bed samples; circles ‘B’ dry acrylic bead samples.

Fig. 14 Distribution of normal forces inside the sample. (Left, a,c) Frequency distributions, the insets have linear-log scales to visually expand the

region of small forces; (right, b,d) complementary cumulative distributions in log-linear scales. (Above, a,b) Distributions of the forces rescaled by the

average force in the sample. (Below, c,d) Distributions of the forces rescaled by the average force in each layer at different depths. Symbols: triangles ‘8’

fluidized bed samples; circles ‘B’ dry acrylic bead samples.
log-linear scale the distributions reveal a linear behavior in their

tails indicating an exponential decay. We observe that the

rescaling of the force with the mean force measured in a layer at

the corresponding height (the one reported in Fig. 13) results in

a cleaner gathering into a consistent linear behavior in the tail

region of all distributions. On the other hand, the rescaling seems

to affect the small forces part where the behaviors of the plots for
This journal is ª The Royal Society of Chemistry 2010
each sample become less homogeneous with the appearance of

a change in the curvature.
A. Local forces acting on a sphere

In Fig. 15 we plot the average of the arithmetic sum of the moduli

of all normal forces acting on a sphere with a given number of
Soft Matter, 2010, 6, 2992–3006 | 3003



Fig. 15 Average of the arithmetic sum of the moduli of all normal forces (total force) acting on a sphere with a given number of contacts z vs. number of

contacts z. (Left) The total force is rescaled to the sample average. (Right) The total force is rescaled by dividing the force by the mean force in the layer at

the grain height (Fig. 13). Symbols: triangles ‘8’ fluidized bed samples; circles ‘B’ dry acrylic bead samples.
contacts z. We observe a very neat linear increase with z. Note

that a linear trend would be expected if the forces at each contact

were independent on the forces at the other contacts of a given

sphere.
Fig. 17 Average pressure (average of the arithmetic sum of the moduli of al

Voronoi volume vs. Voronoi volume divided by the volume of the sphere Vs. (

the whole sample. (Right) The pressure is rescaled by dividing by the mean for

‘8’ fluidized bed samples; circles ‘B’ dry acrylic bead samples.

Fig. 16 Average of the arithmetic sum of the moduli of all normal forces (to

packing fraction. (Left) The total force is rescaled to the sample average force

mean force per contact in the layer at the grain height (Fig. 13). Symbols: tri

3004 | Soft Matter, 2010, 6, 2992–3006
In Fig. 16 we report the average of the arithmetic sum of the

moduli of all normal forces (total force) acting on a sphere with

a given local packing fraction i.e. f ¼ Vs/V. The figure reports

two rescalings with respect to the average force per contact in the
l normal forces divided by Voronoi area) acting on a sphere with a given

Left) The pressure is rescaled by dividing by the mean force per contact in

ce per contact in the layer at the grain height (Fig. 13). Symbols: triangles

tal force) acting on a sphere with a given local packing fraction vs. local

per contact. (Right) The total force is rescaled by dividing the force by the

angles ‘8’ fluidized bed samples; circles ‘B’ dry acrylic bead samples.
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whole sample and in each layer. It is clear that there is a mono-

tonic relation with more densely packed grains carrying larger

forces. This means that larger Voronoi cells are carrying smaller

forces. This is consistent with the previous findings (Fig. 15)

because, indeed, larger Voronoi cells have fewer neighbors than

smaller ones (as discussed in Sec. 7 and reported in Fig. 10).
B. Local pressure

In Fig. 17 we finally report a similar measure, where instead of

the force the ‘pressure’ is considered. In this context the pressure

is defined as the average of the arithmetic sum of the moduli of all

normal forces divided by the total surface area of the corre-

sponding Voronoi cell. Data are renormalized by dividing by the

average force (either in the whole sample or in the layers) and by

multiplying by d2 (to renormalize to the case of unit diameter

spheres). The result is analogous to what is observed for the

forces, with the smaller Voronoi volumes (larger f) carrying

larger pressures.
XI. Conclusions and outlook

In this work we have presented results obtained from a newly

developed ‘virtual laboratory’ platform which combines direct

experimental imagining data from XCT with DEM simulation

tools. We have shown that such a combination is very powerful,

providing ‘virtual samples’ which are geometrically virtually

identical to the experimental ones but from which we can access

physical quantities that would not be easily obtainable from

experiments alone. For instance, we have been able to greatly

improve our estimate of the number of grains in contact and to

study accurately the region of near contacts. In particular, we

pointed out that the exponential law for the growth in the

number of near neighbors with the radial distance is well fol-

lowed across all samples but the exponent is not universal,

varying from 0.7 at low packing fractions to 0.5 for the densest

sample at F x 0.64. We have discussed how close our packings

are to isostaticity and how a critical size of around ten grain

diameters emerges for minimal clusters satisfying the isostatic

condition. The relation between average number of contacts and

packing fraction has been investigated both globally and locally

and it has been compared with analytical predictions. The

distribution of the number of contacts per grain has been

investigated and we introduced a simple meaningful model based

on the idea of free ‘particles’ sharing the solid angle around

a sphere which turns out to reproduce remarkably well the

observed distributions. We have been able to estimate the

complete set of forces on each individual grain and we have

shown that the normal forces follow exponential distributions.

We have also measured the local pressure on each Voronoi cell

and we have uncovered a linear relation between the sum of the

normal forces and the number of contacts on each bead.

These results are a demonstration of the great potential of our

approach. We are able to utilize real experimental data obtained

from granular packings as our starting point, and investigate the

relationship between the internal geometric properties and the

nature of the inter-grain force network. This approach can

provide the key bridge between the two main methodologies,

experimental and computational, that are being used to explore
This journal is ª The Royal Society of Chemistry 2010
and better understand granular matter. By more closely bringing

together these investigations, we can obtain a more complete and

confident picture of the properties of granular matter; providing

the key information necessary to formulate and test new theories.

In future work we will expand on this, examining the dynamic

properties of packings, considering systems under external

loadings and under shear,60 and examining properties of pack-

ings at the point of failure.61 We will also explore the combina-

tion of high speed tomography and other bulk imaging

techniques with DEM during dense granular flow and at the

jamming transition. The role of grain shape in granular systems

is also of great interest62–66 and an extension of this technique to

consider three-dimensional non-spherical grains will also be

pursued.
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