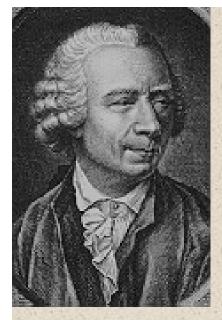
Lecture 1: Topology

Rita M.C. de Almeida Instituto de Física Universidade Federal do Rio Grande do Sul

Plan of the lecture

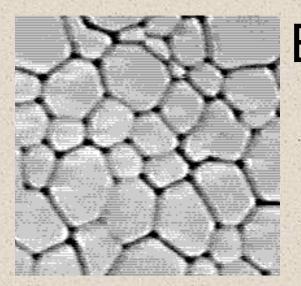
• Euler rules

- Topological charge in 2D
- Topological Gauss Theorem in 2D
- Foam topology: how to characterize?
- Experiments: From Matzke to now what do we measure?
- Average topological quantities
- Measurable topological quantities
- Topological Distribution functions
- Maximum Entropy models (possibly reached in coarsening, see next lecture)



Euler's Rules for convex polyhedra

V=8 E=12 F=6 V=4F/3 E=4F/2 V=12 E= 30 F=20 V=3F/5 E=3F/2



Euler's Rules for a two dimensional tiling: 1 polyhedron, $F \rightarrow \infty$ 2V = 3E $\frac{2}{3}\frac{E}{F} - \frac{E}{F} + 1 = \frac{2}{F}$ V - E + F = 2 $\frac{E}{F} = \frac{\langle n \rangle}{2} = 3$ $\langle n \rangle = 6$

188 François Graner

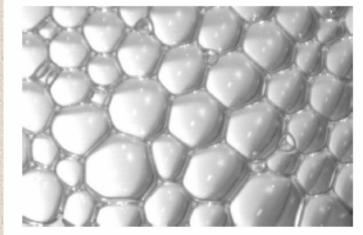
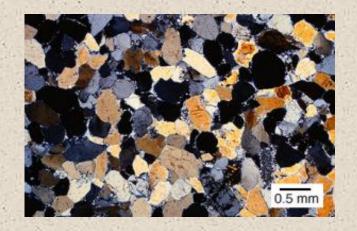
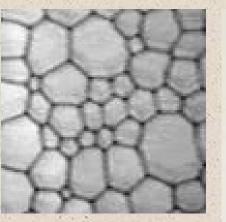
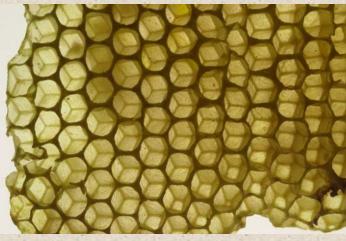


Fig. 1. Example of fluid foam, here the surface of a soap froth. Picture courtesy of S. Courty.

Why three folded vertices

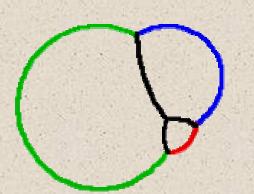


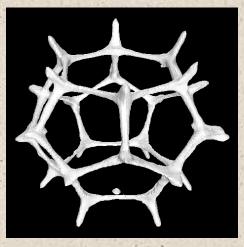




Euler's Rules for tiling 3D spaces V - E + F = 2

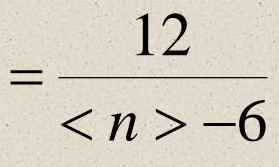
Apply for isolated bubbles: 3V=2E





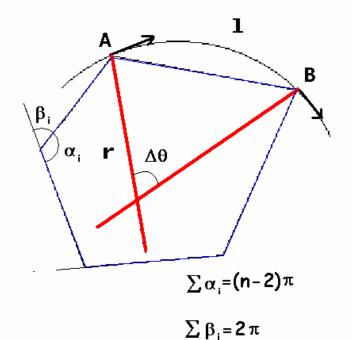
Coxeter identity

- 3v=2e for each, isolated bubble.
- v-e+f=2 → 3f-e=6
- e is the number of edges of a bubble
- in a bubble each edge belongs to 2 faces
- the average number <n> of edges per face is <n>= 2e/f;
- 3f-e=6 → 6f-<n>f=12



Valid for each bubble Relation between two quantities

Topological Charge in 2D



 $\sum \alpha_i = n \frac{\pi}{3}$ $\sum \beta_i = n\pi - \sum \alpha_i = \frac{2n\pi}{3}$ $2\pi - \sum \beta_i = \frac{2\pi}{3}(6-n)$ $q = 2\pi - n\frac{\pi}{3}$

120° angles

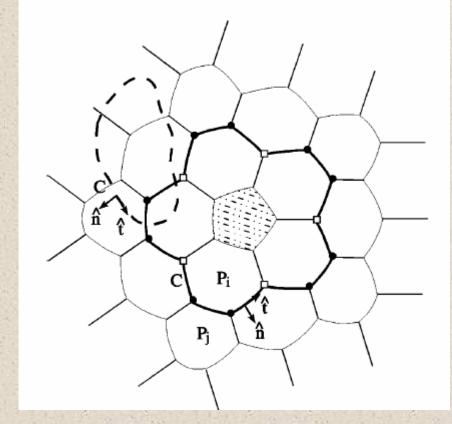
Gauss Theorem in 2D



 $\Delta \theta_i = \frac{l_i}{r_i}$ $\kappa_i = r_i$ $\sum_{i} \frac{l_i}{r_i} + n\frac{\pi}{3} = 2\pi$

 $\sum_{i} \kappa_i l_i = 2\pi - n\frac{\pi}{3} = q$

Other contours



 $Q(C) = \sum_{k \in C} q_k = \frac{\pi}{3} \left(6 - v^+ + v^- \right)$

v⁺: outward verticesv⁻: inward vertices

 $\sum_{C} \kappa_{ij} \ell_{ij} = \sum_{k \in C} q_k = Q(C)$ $k \in C$

Extending to 3D

• Consider a face of n edges.

 $\iint KdS = 2\pi - n(\pi - \theta_0)$ where $\theta_0^S = 109.47^\circ$ and K is the Gaussian curvature:

$$K = \frac{1}{r_1 r_2}$$

Why is it important?

- 2D: The law of Laplace gives the curvature in terms of pressure difference
- 3D: ??

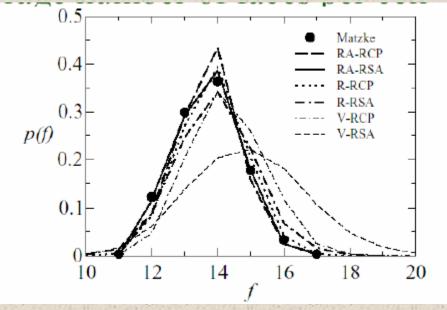
The law of Laplace gives the mean curvature K_m in terms of pressure difference! $K_m = \frac{1}{r_1} + \frac{1}{r_2}$

Measuring: Matzke

- E.Matzke, American Journal of Botany 33, 58-80 (1945))
- E Matzke and J Nestler (American Journal of Botany 33, 130-144 (1946))
- Using a serynge put thousands of monodisperse or bidisperse bubbles by hand.
- Using a binocular stereoscope observed and measured the system. Photographs and drawings.

Matzke Results:

- 600 bubbles in the bulk: <f>~13.70
- 400 bubbles in the boundary: <f>~11.0
- No exception to Plateau's rules.
- No Kelvin cell



- More frequent cells :13 faces
- 4 faces:1, 5 faces:10, 6 faces:2.
- Faces with 4,5 ou 6 edges

Direct images and optical tomography in 2D

- In two dimensions the foam is put between two plexiglass plates:
 Films, photographs, etc
- Good for coarsening investigation.

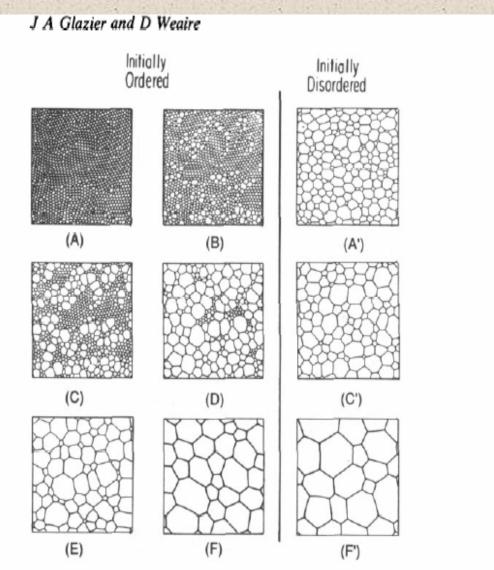
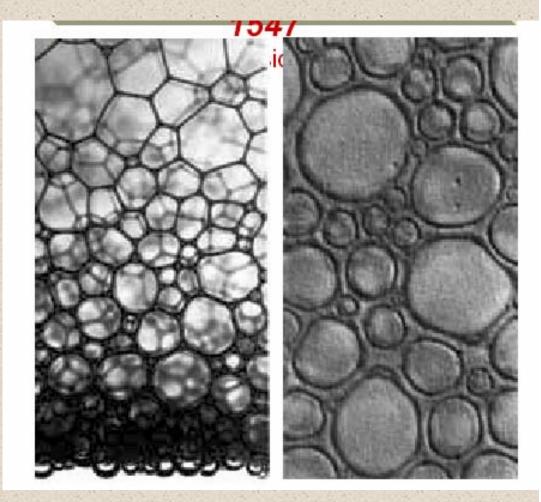


Figure 7. Evolution of a soap froth pattern, for initially ordered (left) and initially disordered (right) states. Times are: (A) 1 h, (B) 2.52 h, (C) 4.82 h, (D) 8.63 h, (E) 19.87 h, (F) 52.33 h; (A') 1.95 h, (C') 21.50 h, (F') 166.15 h. From Glazier *et al* (1987).

What about 3D?

- To look inside a froth it must be very dry!
- Light scattering, then?
- Dry cases: how to deal with so much information?
- Numerical treatment.



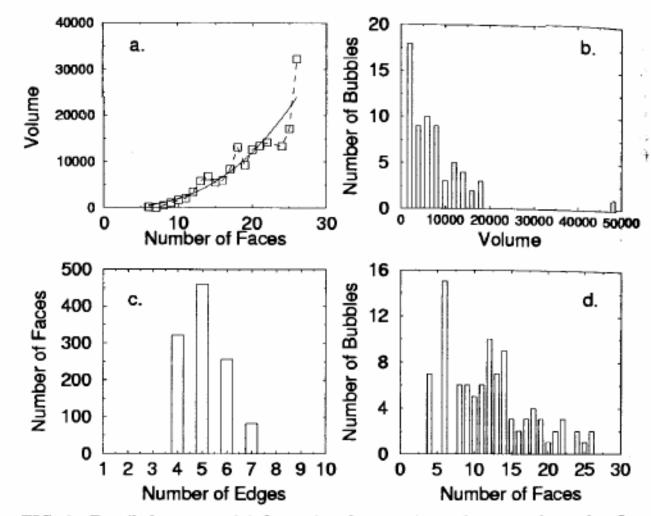


FIG. 2. Detailed structural information from a single data run for a dry foam $(\Phi < 3\%)$ at t = 36 hrs. (a) $\langle V_f \rangle$ vs. f. The exponent $\alpha = 2.7$. Distributions of: (b) Volumes. (c) Edges. (d) Faces. Distributions (b) and (d) are wider than at early times, when the foam is much more ordered.

Magnetic Resonance Imaging of Structure and Coarsening in Three-Dimensional Foams

Burkhard A. Prause and James A. Glazier Department of Physics, University of Notre Dame, Notre Dame, IN 46556

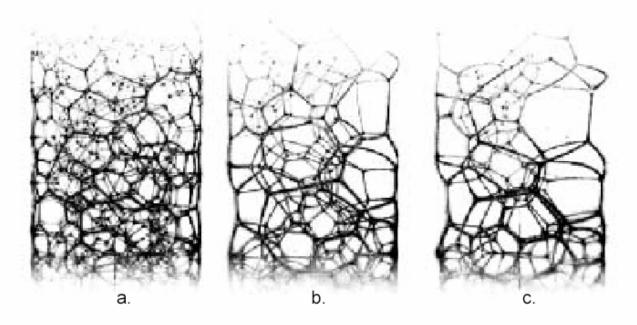


Figure 3. Maximum intensity projections of three-dimensional MRI reconstructions of a foam at three stages of development (a) = 24 hrs. (b) = 36 hrs. (c) = 48 hrs.

Statistics

- What variables define the state of a froth?
- Vertices, edges and faces position.
- 3D: Center of mass position, volume, surface area, number of faces, number and length of edges...and correlations.
- 2D: Center of mass position, area, perimeter, number of edges...and correlations!

Statistics

$$\int dV_b p(V_b) = 1 \qquad \int dV_b p(V_b) V_b = \overline{V_b} = \frac{1 - \Phi_b}{N_V}$$

$$\rho\left(\frac{V_b}{\overline{V_b}}\right)\frac{dV_b}{\overline{V_b}} = p(V_b) \, dV_b$$

$$\int dS \ p(S)S = \overline{S}$$

$$\sum p(F) = 1$$

$$\rho\left(\frac{V_b}{\overline{V_b}}\right) = \overline{V_b} \, p(V_b)$$

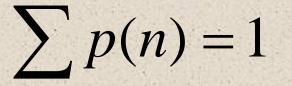
$$\rho\left(\frac{S}{\overline{S}}\right) = \overline{S} \ p(S)$$

 $\sum p(F) F = \overline{F}$

Statistics: 2D

 $\int dA_b \, p(A_b) A_b = \overline{A}$

 $\rho\left(\frac{A_b}{\overline{A}_b}\right) = \overline{A}_b p(A_b)$



 $\sum p(n) = \overline{n} = 6$

 μ_2 and m(n) $\mu_2 = \sum (n - \overline{n})^2 p(n)$ $\mu_2 = \sum_n (f - \overline{f})^2 p(f)$ Aboav-Weaire law $m(n) = A + \frac{B}{n}$ $m(f) = A + \frac{B}{f}$ $\sum m(n) n \ p(n) = \sum n^2 p(n)$ identity n **Compatible forms** $m(n) = 5 + \frac{6 + \mu_2}{n} \qquad m(n) = 6 - a + \frac{6a + \mu_2}{n}$

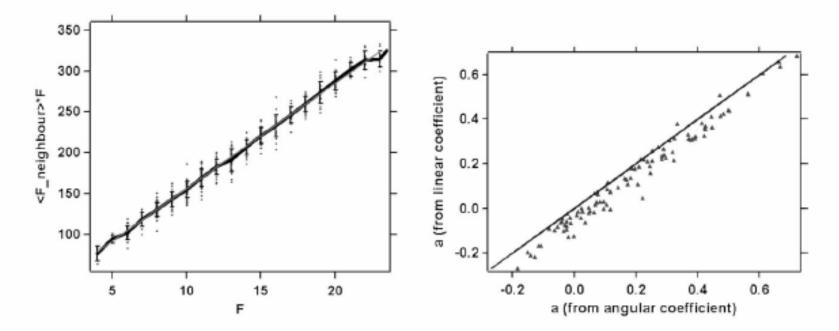
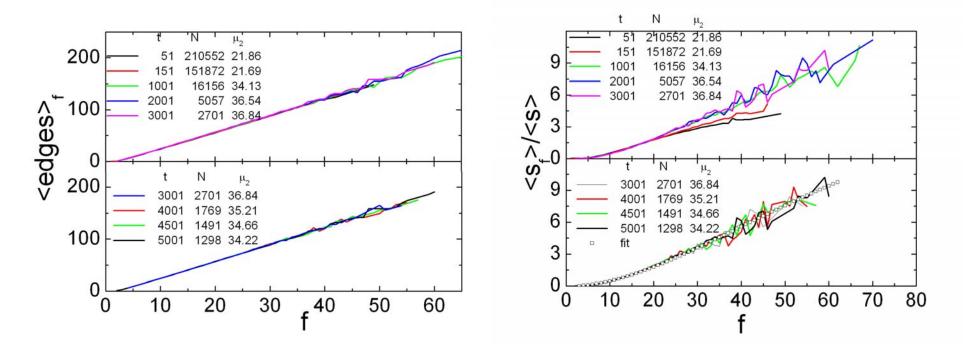


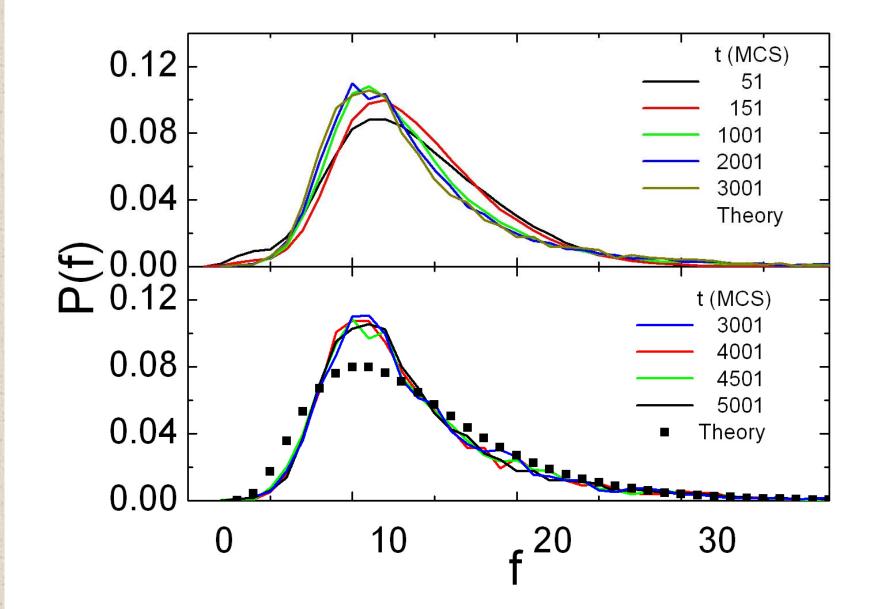
Fig. 5. 3D Aboav–Weaire law. (Left) Correlation between the number of faces of a bubble and of its neighbours for a coarsening foam at a given time; dots = individual bubble values; solid line = average for each value of F; bars = standard deviation for each value of F; thin grey line = linear fit. (Right) Two different measures (see text) of the unknown parameter a from the linear fit by assuming Eq. (7); one is plotted vs. the other for the same foam at each time-step. The solid line is the diagonal (y = x).

Dry three-dimensional bubbles: growth-rate, scaling state and correlations

Stéphane Jurine^a, Simon Cox^{b,1}, François Graner^{a,*}

Colloids and Surfaces A: Physicochem. Eng. Aspects 263 (2005) 18-26





Time evolution

- Foams certainly evolve in time.
- Dynamics reflects in bubbles shapes.
- It is worth simulating!
- Is there a scale invariant regime?
 Distributions of non-dimensional quantities should not vary in time.
 Yes in 2D
- ?? It seems yes in 3D.

Next talks

- Topology and geometry
- Topology, geometry, and coarsening