Shared lecture:

- 1. Microfluidics (me)
- 2. Fluid dynamic simulations of foams with FEMLAB (COMSOL)
 - Anthony Saugey

Ordered foam structures in cylindrical tubes

Creative Foams Tutorial

200 μm

J.-P. Raven, P. Marmottant

dry

Ordered foam structures in flat channels

200 μ m depth

Make things more interesting: For example FANCY Y-FRONTS

Antje's & Jan- Paul's Tutorial

These systems are great for two very good reasons:

1. Strong applied interest

2. Improve understanding of foam and emulsion rheology on the scale of a few

bubbles (simulations doable etc., also the case for nonmicro systems)

DISCRETE/DIGITAL MICROFLUIDICS for LAB-ON-A-CHIP TECHNOLOGIES

DISCRETE/DIGITAL MICROFLUIDICS

SOME FUNDAMENTAL INGREDIENTS to fluid dynamics (of foams) on small length-scales *L*

study viscous effects etc.)

Sample generation

Sample manipulation

Sample manipulation

Plug flow guaranteed!

detectors

Sample storage & analysis

Transition to Anthony Small length scales – large dissipation etc....

Bretherton, Denkov, Cantat