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Modelling Foam Drainage

• Liquid flows through a static foam under the action of gravity.

• Viscosity and pressure differences affect the flow.

• Unlike in porous media, the foam can swell to accommodate
more liquid.

• Need a model that describes the distribution of liquid in a
foam over time.



The Free Drainage Experiment

Can we predict the results of experiments like this?

Capacitance measurements showing liquid fraction of a foam in free drainage. Time interval
between scans was 20 seconds. [Weaire, Hutzler (1999) The Physics of Foams, Oxford.]



Liquid network

Assume low flow-rates and
small capillary numbers, so
that flow does not distort ge-
ometry of foam.



Two models

Two models: the choice of surfactant influences whether the
dissipation occurs in the Plateau borders or the junctions.

Shearing flow

Gravity

Poiseuille / plug flow

Liquid

Pressure gradient



Plateau border (channel-dominated) FDE

• Neglect the contribution of the liquid in the films and the
junctions.

• Assume foam is monodisperse and dry
(so Plateau borders are long and thin with approximately constant cross-sectional area).

• Assume Poiseuille (no-slip) flow in the Plateau borders
(Stokes flow, no inertia).

• Define A(x, t) to be the Plateau border cross-section at
position x and time t.

• A is a local measure of the foam’s liquid fraction:
Φl = cA/V

2/3
b .

• The proportionality constant c ≈ 5.35 depends weakly on
structure.



Liquid conservation

• Consider a single PB through which liquid flows with
flow-rate Q.

• Liquid is conserved, so

∂A

∂t
+ ∇.Q = 0.

• To make the analysis more transparent, let’s consider the flow
in a vertical PB, x = (0,0, z):

∂A

∂t
+

∂Q

∂z
= 0.



Poiseuille flow in a PB

• What is the Stokes velocity profile in a PB with no-slip
boundary conditions?

• If PB is long and thin, with constant A, then this is a 2D
problem, u = u(x, y).

• Solve Poisson’s equation η∇2u = G (pressure gradient),
subject to u = 0 on the boundary of the curvilinear triangle.

• No exact solution, but

〈u〉 =
1

A

∫

udA =
AG

fη

with a numerical prediction of the “drag coefficient” of
f ≈ 49 (cf f = 8π for a circular pipe).



Force balance

• The flow-rate Q = 〈u〉A is a balance between weight,
viscous dissipation (drag) and pressure differences between
parts of the PB with different A (capillary forces) .

• Recall that A = C2r2, with C2 = 0.161.

• For a volume element Adz of PB:

– the weight of liquid is ρg;

– the viscous force is ηf〈u〉/A;

– the pressure difference, from the Laplace Young Law,
pl − pg = γ

r
, is

∂pl

∂z
=

1

2
CγA−3

2
∂A

∂z



Flow-rate

• The force balance gives

ρg =
ηf〈u〉

A
+

1

2
CγA−3

2
∂A

∂z
so

Q = 〈u〉A =
ρg

ηf
A2 − 1

2

Cγ

ηf

√
A

∂A

∂z

• Not all Plateau borders are vertical, but randomly oriented.
The flow-rate in a PB at angle θ is decreased by a factor of
cos2(θ).

• Since 〈cos2(θ)〉 = 1
3
, there is an effective increase of the

viscosity by a factor of 3.



Foam Drainage Equation

• The 1D channel-dominated foam drainage equation is
therefore

3ηf
∂A

∂t
+

∂

∂z



ρgA2 − Cγ

√
A

2

∂A

∂z



 = 0.

• Effective viscosity is η∗ = 3fηl; note how it affects only the
time-scale.

• Boundary conditions are applied at top (z = 0) and bottom
(z = L) of foam.

• This is a highly nonlinear equation: only a few analytic
solutions have been found.



Dimensionless parameters

• Approximations valid up to about Φl = 5%; seems to work
at higher Φl.

• For analysis and numerical solution, it is helpful to write the
equation in dimensionless variables.

• e.g. put τ = t/t0, ξ = z/z0 and α = A/z2
0 with

x0 =
√

ρg/Cγ and t0 = 3fη/
√

ρgCγ; then

∂α

∂τ
+

∂

∂ξ



α2 −
√

α

2

∂α

∂ξ



 = 0.



Higher dimensions

• The equation generalizes naturally to 2D and 3D situations,
since gravity acts only in the ξ direction:

∂α

∂τ
+

∂α2

∂ξ
−∇.





√
A

2
∇A



 = 0.

• We can also model changes in container width or coarsening
by altering the number of Plateau borders N(ξ, τ) in the
foam:

∂Nα

∂τ
+

∂Nα2

∂ξ
−∇.



N

√
A

2
∇A



 = 0.

Mostly numerical solutions required; exceptions include “Eiffel Tower”.



Node-dominated drainage

• Now consider a surfactant with low surface shear viscosity.

• Plug flow in PBs. Shearing flow in junctions.

• Integrate Stokes equation over the liquid in the foam:
∫

Vliq

(∇p − ρg) =
∫

Vn
η∇2udV +

∫

Vpb

η∇2udV.

Koehler et al (PRL, 1999)

• In this limit, PB contribution to viscous dissipation (last
integral) is small.



Node-dominated drainage

• L is the length of a single Plateau border.

• Integrating over nodes (junctions), per unit volume of foam,
gives

ρg + Cγ∇ 1√
A

=
ηI

2cL

u√
A

where I is a dimensionless number independent of liquid
fraction.

• In analogy with Darcy’s Law for porous media, the
permeability varies with

√
A. It is linear in the

channel-dominated case.



Node-dominated drainage

• Projecting into 1D leads to a flow-rate

ηI

2cL
Q = ρgA3/2 − 1

2
Cγ

∂A

∂z

which, combined with the continuity equation gives

ηI

2cL

∂A

∂t
+

∂

∂z

(

ρgA3/2 − 1

2
Cγ

∂A

∂z

)

= 0.

• Differs from the channel-dominated equation by a factor of√
A in the flow-rate and the effective viscosity.



Dimensionless forms

• The final equations are very similar in dimensionless form:

• Channel-dominated:
∂α

∂τ
+

∂

∂ξ



α2 −
√

α

2

∂α

∂ξ



 = 0.

• Node-dominated:
∂α

∂τ
+

∂

∂ξ



α
3
2 − 1

2

∂α

∂ξ



 = 0.

(Different non-dimensionalizations.)



Solutions of the drainage equations

• Steady, forced, free and pulsed drainage;

• Microgravity;

• Analytic solutions;

• Numerical solutions using finite difference (e.g. FORTRAN,
C, . . . ) or finite element (e.g. Femlab).



Steady drainage

• Constant liquid fraction is a solution of each FDE.

• It corresponds to a steady input of liquid into the top of a
column of foam.

• Two other steady drainage solutions are found from each of

α2 − 1

2

√
α

∂α

∂ξ
= α2

0

or

α3/2 − 1

2

∂α

∂ξ
= α

3/2
0

but hard to find physically realistic interpretations of them.



Equilibrium Profile

• Eventually a column of freely draining foam reaches
equilibrium, when gravitational and pressure/capillary
forces balance.

• Put flow-rate Q = 0 everywhere to get the equilibrium
profile:

αeq(ξ) =





1
√

αL

+ L − ξ





−2

.

• Liquid fraction never decreases completely to zero.

• Without coarsening/coalescence/collapse all liquid foams
should attain this profile.

• How does it get there?



Free Drainage
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• A foam of constant liquid frac-
tion is made (e.g. using steady
drainage) and left to drain under
gravity.

• Use channel-dominated FDE
(other case similar).

• The distribution of liquid varies in
several well-defined regimes.



Drained liquid

Volume of drained liquid V (t) reflects liquid fraction profiles:
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Capillary Rise (Regime 1)

• The profile at the base of the foam is established by capillary
action.

• The liquid fraction has to increase from its initial value α0 to
the liquid fraction of a bubbly liquid αL.

• Transition is almost instantaneous.

• Volume of liquid in foam increases.



Capillary Rise (Regime 1)
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Kraynik’s solution (Regime 2)

• Profiles of liquid fraction almost straight, so ignore capillary
forces and solve

∂α

∂τ
+

∂α2

∂ξ
= 0

with boundary condition α(0, τ) = 0.
Can improve this: see Verbist, Weaire and Kraynik (1996).

• Kraynik’s solution is

α(ξ, τ) =

{

ξ/(2τ) ξ ≤ 2α0τ
α0 ξ ≥ 2α0τ

represents straight lines connecting the origin to the initial
liquid fraction.

• Volume of drained liquid increases linearly: V/V0 = 1
L
α0τ.



Linear Increase in V (Regime 2)
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Regime 3

• Profiles remain straight (away from bottom of foam) and
evolve independently of initial liquid fraction.

• Continue to use Kraynik’s solution:

α(ξ, τ) =
ξ

2τ
.

• Volume of drained liquid therefore

V/V0 = 1 − L

4α0

1

τ
.



Regime 3
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Approach to equilibrium I

• How does liquid fraction reach equilibrium profile?

• Evaluate the behaviour of a perturbation about equilibrium:

α(ξ, τ) = αeq(ξ) + εαp(ξ, τ) + O(ε2)

for 0 < ε � 1.

• Look for separable solutions

αp(ξ, τ) = ᾱp(ξ)T (τ)

and substitute in FDE.

• Then T (τ) = e−µτ for some µ > 0.

• Approach to equilibrium is therefore exponential.



Approach to equilibrium II

• We can construct the complete solution for αp(ξ, τ), which
involves Bessel functions.

• The lowest eigenvalue is

µ = µ0 = 1.22 × 10−5

giving a time-scale of the order of one hour.



Forced Drainage
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• Liquid is added continu-
ously to a dry foam.

• It is observed to descend
with a well-defined front
at constant speed v.



Forced Drainage

• FDEs have a travelling wave solution.

• Channel-dominated:

α(ξ, τ) =







v tanh2(
√

v[ξ − vτ ]) ξ ≤ vτ
0 ξ ≥ vτ

• Node-dominated:

α(ξ, τ) =





v

1 + exp(1
2
v[ξ − vτ ])]





2



Solitary wave
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• Qualitative agreement excellent; quantitative agreement to
within a factor of 2.

• Note that wave may actually run on something closer to
equilibrium background.



Important differences

• Channel-dominated: v(= α) ∼ Q1/2; wf ∼ v−1/2.

• Node-dominated: v ∼ Q1/3; wf ∼ v−1.

• Latter is exponential, so front not sharp.

• Identify Q with superficial velocity to eliminate container
effects.



Double wave

Related solutions include a wave on a uniformly wet foam
(double wave):
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Pulse
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A small volume V of liquid is
added to the top of a foam and
left to evolve.



Pulse II

• By ignoring the capillary (diffusive) terms we can use
Kraynik’s solution again:

α =















ξ

2τ
ξ ≤ 2

√
V τ

0 ξ > 2
√

V τ

i.e. straight lines radiating from the origin (N-waves).

• In the node-dominated case this is

α =















4ξ2

9τ2
ξ ≤ 3(1

4
V τ2)1/3

0 ξ > 3(1
4
V τ2)1/3

so that the profile is quadratic.



Foams in Space

With no gravitational force, we can study wet foams
experimentally.

The channel-dominated FDE becomes
∂α

∂τ
=

∂

∂ξ





√
α

2

∂α

∂ξ





i.e. a nonlinear diffusion equation. Node-dominated is linear.

Analogies of free, forced and pulsed drainage, with relevant
scaling solutions.



A spreading pulse in zero gravity
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A spreading pulse in zero gravity

A small volume λ0 of liquid is introduced into a dry foam and
left to spread. Conservation of liquid requires that the solution
scales according to

α(ξ, τ) = τ−2/5y(s), s =
ξ

τ2/5
.

Then y satisfies

−(sy)′ =
5

6

(

y3/2
)′′

with solution

α(ξ, τ) =

(

C2τ4/5 − ξ2
)2

25τ2

where C = (375λ0/16)1/5.
[Koehler, Hilgenfeldt & Stone (1999) in Foams and Films MIT Verlag.]



Summary

• There are now several drainage equations that can be applied
in different situations, predicting behaviour in good
agreement with experiments on dry foams.

• Recent theory can account for bubble motion, non-uniform
bubble distribution, changes in container shape and
microgravity.

• There are still some unexplained effects, particularly
instabilities of the foam structure.


