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Modelling Foam Drainage

e Liquid flows through a static foam under the action of gravity.
e Viscosity and pressure differences affect the flow.

e Unlike in porous media, the foam can swell to accommodate
more liquid.

e Need a model that describes the distribution of liquid in a
foam over time.




The Free Drainage Experiment

Can we predict the results of experiments like this?
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Capacitance measurements showing liquid fraction of a foam in free drainage. Time interval

between scans was 20 seconds. [Weaire, Hutzler (1999) The Physics of Foams, Oxford.]




Liquid network

Assume low flow-rates and
small capillary numbers, so
that flow does not distort ge-
ometry of foam.




Two models

Two models: the choice of surfactant influences whether the
dissipation occurs 1n the Plateau borders or the junctions.
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Plateau border (channel-dominated) FDE

e Neglect the contribution of the liquid in the films and the
junctions.

e Assume foam is monodisperse and dry

(so Plateau borders are long and thin with approximately constant cross-sectional area).

e Assume Poiseuille (no-slip) flow in the Plateau borders
(Stokes flow, no inertia).

e Define A(x,t) to be the Plateau border cross-section at
position x and time ¢.

e A is alocal measure of the foam’s liquid fraction:
Cbl = cA / %2/3.

e The proportionality constant ¢ ~ 5.35 depends weakly on
structure.




Liquid conservation

e Consider a single PB through which liquid flows with
flow-rate Q).

e Liquid is conserved, so
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e To make the analysis more transparent, let’s consider the flow
in a vertical PB, z = (0, 0, 2):
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Poiseuille flow in a PB

e What is the Stokes velocity profile in a PB with no-slip
boundary conditions?

e If PB is long and thin, with constant A, then this is a 2D
problem, u = u(x,y).

e Solve Poisson’s equation nV2u = G (pressure gradient),
subject to u = O on the boundary of the curvilinear triangle.

e No exact solution, but
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with a numerical prediction of the “drag coefficient” of
f =~ 49 (cf f = 8 for a circular pipe).




Force balance

e The flow-rate () = (u) A is a balance between weight,
viscous dissipation (drag) and pressure differences between
parts of the PB with different A (capillary forces) .

e Recall that A = C?%r2, with C?2 = 0.161.

e For a volume element Adz of PB:
— the weight of liquid is pg;
— the viscous force is nf (u) /A;

— the pressure difference, from the Laplace Young Law,
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Flow-rate

e The force balance gives
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e Not all Plateau borders are vertical, but randomly oriented.
The flow-rate in a PB at angle 6 is decreased by a factor of

cos?(0).

e Since (cos?(0)) = %, there is an effective increase of the
viscosity by a factor of 3.




Foam Drainage Equation

e The 1D channel-dominated foam drainage equation is
therefore
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e Effective viscosity is n* = 3 fn;; note how it affects only the

time-scale.

e Boundary conditions are applied at top (z = 0O) and bottom
(z = L) of foam.

e This 1s a highly nonlinear equation: only a few analytic
solutions have been found.




Dimensionless parameters

e Approximations valid up to about ®; = 5%; seems to work
at higher &;.

e For analysis and numerical solution, it 1s helpful to write the
equation in dimensionless variables.

e cg.putT = t/to, £ = z/20 and o = A/z5 with
ro = \/pg/C”y and to = 3fn/+/pgC~; then
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Higher dimensions

e The equation generalizes naturally to 2D and 3D situations,
since gravity acts only in the & direction:

2
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e We can also model changes in container width or coarsening
by altering the number of Plateau borders N (&, 7) in the
foam:

2
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Mostly numerical solutions required; exceptions include “Eiffel Tower”.




Node-dominated drainage

e Now consider a surfactant with low surface shear viscosity.
e Plug flow in PBs. Shearing flow in junctions.

e Integrate Stokes equation over the liquid in the foam:

/Vh-q (Vp—pg) = /Vn nV3udV + /%b nVZudV.

Koehler et al (PRL, 1999)

e In this limit, PB contribution to viscous dissipation (last
integral) 1s small.




Node-dominated drainage

e [ 1s the length of a single Plateau border.

e Integrating over nodes (junctions), per unit volume of foam,
gives
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where [ 1s a dimensionless number independent of liquid
fraction.

e In analogy with Darcy’s Law for porous media, the

permeability varies with v/ A. It is linear in the
channel-dominated case.




Node-dominated drainage

e Projecting into 1D leads to a flow-rate

e, =PI > Vo,

which, combined with the continuity equation gives
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e Differs from the channel-dominated equation by a factor of
v/ A in the flow-rate and the effective viscosity.




Dimensionless forms

e The final equations are very similar in dimensionless form:

e Channel-dominated:
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e Node-dominated:

8a|8<3 1804)

i o2 — ————
or 0 2 0&

(Different non-dimensionalizations.)




Solutions of the drainage equations

e Steady, forced, free and pulsed drainage;

e Microgravity;

e Analytic solutions;

e Numerical solutions using finite difference (e.g. FORTRAN,
C, ...) or finite element (e.g. Femlab).




Steady drainage

e Constant liquid fraction 1s a solution of each FDE.

e [t corresponds to a steady input of liquid into the top of a
column of foam.

e Two other steady drainage solutions are found from each of
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but hard to find physically realistic interpretations of them.




Equilibrium Profile

e Eventually a column of freely draining foam reaches
equilibrium, when gravitational and pressure/capillary
forces balance.

e Put flow-rate () = O everywhere to get the equilibrium
profile:
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e Liquid fraction never decreases completely to zero.

e Without coarsening/coalescence/collapse all liquid foams
should attain this profile.

e How does it get there?




Free Drainage

e A foam of constant liquid frac-
tion 1s made (e.g. using steady
drainage) and left to drain under

20 7] .
gravity.
S 40 | o Use channel-dominated FDE
13 (other case similar).
§ 60 1 e The distribution of liquid varies in
several well-defined regimes.
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Drained liquid

Volume of drained liquid V' (¢) reflects liquid fraction profiles:
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Capillary Rise (Regime 1)

e The profile at the base of the foam 1s established by capillary
action.

e The liquid fraction has to increase from its initial value ag to
the liquid fraction of a bubbly liquid a..

e Transition 1s almost instantaneous.

e Volume of liquid in foam increases.




Capillary Rise (Regime 1)
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Kraynik’s solution (Regime 2)

e Profiles of liquid fraction almost straight, so 1ignore capillary
forces and solve

O | Oa? — 0
or o€

with boundary condition «(0, 7) = O.
Can improve this: see Verbist, Weaire and Kraynik (1996).

e Kraynik’s solution is

_[&/(21) €< 207
oz(f,T)—{ o0 5220487'

represents straight lines connecting the origin to the initial
liquid fraction.

e Volume of drained liquid increases linearly: V/Vy = %Cko’i'.
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Linear Increase in V (Regime 2)
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Regime 3

e Profiles remain straight (away from bottom of foam) and
evolve independently of initial liquid fraction.

e Continue to use Kraynik’s solution:

o(6,m) =

T

e Volume of drained liquid therefore
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Approach to equilibrium I

e How does liquid fraction reach equilibrium profile?

e Evaluate the behaviour of a perturbation about equilibrium:

a(€,7) = aeg(€) + eap(€,7) + O(€2)
forO < e < 1.

e ook for separable solutions

ap(€,7) = ap(§)T(7)

and substitute 1n FDE.
e Then T'(7) = e #" for some u > O.

e Approach to equilibrium is therefore exponential.




Approach to equilibrium II

e We can construct the complete solution for o, (&, 7), which
involves Bessel functions.

e The lowest eigenvalue 1s

= po=122x107"

giving a time-scale of the order of one hour.




Forced Drainage

0 _— e Liquid 1s added continu-
ously to a dry foam.
20 . e [t 1s observed to descend
with a well-defined front
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Forced Drainage

e FDEs have a travelling wave solution.

e Channel-dominated:

ey = [

vT
vT
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e Node-dominated:

v

1 4+ exp(Gv[€ — vT])]
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Solitary wave
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e Qualitative agreement excellent; quantitative agreement to
within a factor of 2.

e Note that wave may actually run on something closer to
equilibrium background.




Important differences

e Channel-dominated: v(= a) ~ QY/?; w; ~ v~1/2,

¢ Node-dominated: v ~ Q/3; w; ~ v71,
e Latter 1s exponential, so front not sharp.

e Identify () with superficial velocity to eliminate container
effects.




Double wave

Related solutions include a wave on a uniformly wet foam
(double wave):
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Pulse
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Pulse Il

e By ignoring the capillary (diffusive) terms we can use
Kraynik’s solution again:
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1.e. straight lines radiating from the origin (N-waves).

e In the node-dominated case this is
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so that the profile 1s quadratic.




Foams in Space

With no gravitational force, we can study wet foams
experimentally.

The channel-dominated FDE becomes
da _ 0 (y/ada
or 9\ 2 8¢

1.e. a nonlinear diffusion equation. Node-dominated 1s linear.

Analogies of free, forced and pulsed drainage, with relevant
scaling solutions.




A spreading pulse in zero gravity
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A spreading pulse in zero gravity

A small volume Ag of liquid 1s introduced into a dry foam and
left to spread. Conservation of liquid requires that the solution
scales according to

a(é, ) =7%%(s), s= 5

Then y satisfies

—(sy) = ( 3/2)"
with solution
(027_4/5 _ 52)2

a(6,m) =

where C' = (375X/16)1/5.

[Koehler, Hilgenfeldt & Stone (1999) in Foams and Films MIT Verlag.]




Summary

e There are now several drainage equations that can be applied
in different situations, predicting behaviour in good
agreement with experiments on dry foams.

e Recent theory can account for bubble motion, non-uniform
bubble distribution, changes in container shape and
microgravity.

e There are still some unexplained effects, particularly
instabilities of the foam structure.




