
FOAM DRAINAGE – part 3

gas effect : coupling coarsening and drainage (1)

C2F6 :almost « insoluble » , so no coarsening

N2 : much more soluble, significantly faster coarsening 
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strong effect of the gas on the drainage speed !
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drainage time :

coarsening time :

tc / td >> 1 :  low coarsening during drainage  
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gas effect : coupling coarsening and drainage (2)
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tc / td << 1 : strong coarsening DURING drainage

acceleration of drainage

coupling between both effects

In the extreme case : all drainage is controlled by coarsening
+ no more dependance with ε

gas effect : coupling coarsening and drainage (3)

Height effect : 

Note that one can already reduce coarsening with only traces of an insoluble 
gas added to a soluble one…
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foam sample height

Drainage time for different liquid fractions :  

tc / td >> 1 :
dependence with ε

tc / td << 1 :
no more
dependence on ε



Container shape effect
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the sample cross-section A is not always constant :  

conservation equation :
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a special case : drainage in an Eiffel Tower...

with that shape, one should 
get
no vertical gradients
during drainage... 

liquid fraction profiles :  
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Eiffel tower A = cst 

Bulk viscosity effect: Newtonian and Non-Newtonian fluids
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newtonian fluids (glycerol-based) : 

PB resistance Rpb when viscosity µ , as M  
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shear-thinning fluids : 

same as Newtonian, as soon as one uses 
an effective viscosity : the one 

associated to the shear rate occuring 
inside the foam
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Non-gravitational drainage (1)

gravity       
capillarity       

the flow is mainly 
controlled by gravity

on ground :  
B =               > 1       
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hypothesis valid 
for dry foams

Experimental limits 
for wet foams : 
convective instability

B << 1
the flow is then only due 
to capillary effects

A forced-drainage in microgravity ?  
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Parabolic flights ?

20 sec. of µg at each parabola

30 parabolas / flight  

3 flights / session



Continuous flowrate, injected in 1 point : 

isotropic 
propagation ?

3D foam, in a 
flat cell…

Dry foam
(white)
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Non-gravitational drainage (2)
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liquid profiles : Front behavior :
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Non-gravitational drainage (3)

Theory :  

no convective instabilities in micro-gravity...

agreement with the “g=0 drainage equations” at low ε

still some agreement with the “g=0 drainage equations” at high ε



Thin film drainage 
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∆  =Reynolds equation for thin film drainage speed 

(large thickness, without disjoining forces) : 

vertical film on a frame… :  

(Drawings from A. Aradian thesis)

« marginal regeneration »

(Mysels)

black film

coloured 
film

turbulent 
zones

for very mobile surfaces

Almost 
never work ! 

Thin film drainage (2) 
horizontal film held on a support (suction by PBs) :  

Large film diameter : « dimple »

The dimple is finally
« sucked » into the PB : 

In a symmetric way : signature of low surface mobility
In a single point : signature of high surface mobility

small film diameter : no dimples, no circulation, flat thin film



Flow in a single PB 
O. Pitois, C. Fritz, M. Adler, MLV

(O. Pitois, C. Fritz, M. Adler, Coll. Surf. A, 2005)

Measurements of the pressure 
drop over a single PB : 

Effect of the interfacial mobility

Measurements of 
PB cross section, 

as a function of Q

(also similar experiments by E. Janiaud, F. Elias, Paris 6)

Flow in PBs between glass plates 
W. Drenckhan, TCD

M = ∞

M = 0

Measurements of the PB size vs Q :
for different surface properties. 
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With this setup :  mostly high values of M 



During drainage : the bubble move upward…

« If you were a bubble, in a draining foam… »

Time = 0 Time = ∞
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Following the position
of markers in the foam : 

…and assuming mass conservation, one 
can recovers the liquid fraction 
evolution ε (z, t) . 

time = ∞

important results to remember…

(ask me for complete references on these results)

- take care of the effect of coarsening during drainage ! 

- First steps of drainage of a thin film towards its equlibrium 
value is quite complex (dimples, marginal regeneration, …) . Many 
dynamic effects, which also depends on the film size. 

- Experiments on isolated structures (like single PB, 2 PBs, single 
thin film) are usually consistent with macroscopic measurements in 
foams, and are quite useful. 

- Experiments in microgravity : a lot of fun ! 


