FOAM DRAINAGE - part 3

gas effect : coupling coarsening and drainage (1)

C,F, :almost « insoluble » , so no coarsening

N, : much more soluble, significantly faster coarsening

Free-drainage, liquid fraction at a Free-drainage, height of drained liquid :
given position :
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strong effect of the gas on the drainage speed !




gas effect

R¢

coarsening time : e~ 2Df(e)
drainage time : 74 ~ £ H
Ree

t./ty;>>1": low coarsening during drainage

t./ty << 1: strong coarsening DURING drainage
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coupling between both effects

\ 4

acceleration of drainage

In the extreme case : all drainage

: coupling coarsening and drainage (2)

is controlled by coarsening
+ no more dependance with €

gas effect :

Height effect :
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coupling coarsening and drainage (3)

Drainage time for different liquid fractions :

\tC/td << 14

no more 3
dependencg on &

/ foam sample height .

t/ty>>1:
dependence with ¢

Note that one can already reduce coarsening with only traces of an insoluble

gas added to a soluble one...




Container shape effect

the sample cross-section A is not always constant :
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conservation equation : [

a special case : drainage in an Eiffel Tower...
liquid fraction profiles :

4 = cst Eiffel tower
A(z) =A exp(z/ o) % :
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with that shape, one should
get

no vertical gradients

during drainage...

dry wet dry wet

Bulk viscosity effect: Newtonian and Non-Newtonian fluids
newtonian fluids (glycerol-based) :
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PB resistance R,, \ when viscosity y/, as M~ M =%
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glycerol shear-thinning fluids :

Xanthan

carbopol same as Newtonian, as soon as one uses
0.2 an effective viscosity : the one
associated to the shear rate occuring
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Non-gravitational drainage (1)
on ground :

_ gravity the flow is mainly hypothesis valid
controlled by gravity for dry foams

o€ P £V 6‘_1 _ Experimental limits
or +V'(>< 2 ng =0 for wet foams :

convective instability

capillarity

A forced-drainage in microgravity ?
Liquid
B<«<1

—> the flow is then only due
to capillary effects

wet

Parabolic flights ?
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@ 20 sec. of ug at each parabola

@ 30 parabolas / flight

@ 3 flights / session




Non-gravitational drainage (2)

Continuous flowrate, injected in 1 point :

3D foam, ina

flat cell... . .
isotropic
propagation ?
Dry foam
(white)
4
Liquid limits :
at 7s
different times :
10s
15s

g liquid fraction

Non-gravitational drainage (3)

liquid profiles : Front behavior :
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@® agreement with the “g=0 drainage equations” at low ¢
@ still some agreement with the “"g=0 drainage equations” at high ¢

@® no convective instabilities in micro-gravity. ..




Thin film drainage

Reynolds equation for thin film drainage speed V = 2h3Ap Almost
(large thickness, without disjoining forces) : 3 ,uR2 never work |

vertical film on a frame... : _
for very mobile surfaces
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(Drawings from A. Aradian thesis)

Thin film drainage (2)
horizontal film held on a support (suction by PBs) :

Large film diameter : « dimple »

The dimple is finally
« sucked » into the PB :

In a symmetric way : signature of low surface mobility
In asingle point : signature of high surface mobility

small film diameter : no dimples, no circulation, flat thin film




4 Measurements of
.. 7 PBcross section,
4 100 pm as a function of Q

Flow in a single PB
O. Pitois, C. Fritz, M. Adler, MLV

(O. Pitois, C. Fritz, M. Adler, Coll. Surf. A, 2005)
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Measurements of the pressure
drop over a single PB :
Effect of the interfacial mobility

-

(also similar experiments by E. Janiaud, F. Elias, Paris 6)

Flow in PBs between glass plates

rlass plates

camera
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Measurements of the PB size vs Q :
for different surface properties.

M =4
Ls

With this setup : mostly high values of M

W. Drenckhan, TCD
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Plateau borders |
glass plates




« If you were a bubble, in a draining foam... »

During drainage : the bubble move upward...

Following the position
of markers in the foam :
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..and assuming mass conservation, one
can recovers the liquid fraction
evolution ¢ (z, 1) .

important results to remember...

(ask me for complete references on these results)

- take care of the effect of coarsening during drainage !

- First steps of drainage of a thin film towards its equlibrium
value is quite complex (dimples, marginal regeneration, ..) . Many
dynamic effects, which also depends on the film size.

- Experiments on isolated structures (like single PB, 2 PBs, single
thin film) are usually consistent with macroscopic measurements in
foams, and are quite useful.

- Experiments in microgravity : a lot of fun /




