Foam films: Properties and Stability

A. Chemistry of foam stabilizers.

B. Foam films – basic properties and methods for investigation.

C. Antifoams.

A. Chemistry of foam stabilizers

Aim of presentation

Relation between surfactant chemical structure and mode of foam stabilization

CONTENTS

- 1. Nonionic, ionic, and amphoteric surfactants.
- 2. Polymeric surfactants.
- 3. Particles as foam stabilizers.

Low-molecular mass surfactants

2. Ionic surfactants

 $n=12 \Rightarrow$ sodium dodecyl sulfate, SDS

 $n=12 \Rightarrow$ dodecyl trimethyl ammonium chloride, DTAC

3. Amphoteric surfactants

(a) Natural soaps (alkylcarboxylates), Lipids

(b) Betaines

Comparison

of the low-molecular mass surfactants

Sensitivity*	Nonionic	lonic	Amphoteric
Electrolytes	NO	YES	Depends on pH
Temperature	YES	NO	NO
рН	NO	NO	YES

*Adsorption, surface tension, CMC, micelle size and shape, foaminess and foam stability

Surfactant mixtures are usually used in applications (main surfactant + cosurfactants)

Polymeric surfactants

1. Synthetic polymers

(a) Homopolymers

Polyvinyl alcohol, PVA

Modified polysacharides

(b) Block-copolymers

 $HO - (CH_2CH_2O) + (CH_2CH_2CH_2O) + (CH_2CH_2O) + H$

Synperonics, EO_nPO_mEO_n

2. Natural polymers (proteins)

(a) Globular

Bovine serum albumin, BSA β-lactoglobulin, BLG

3. Solid particles

(a) Mineral

SiO2 Cre particles

(b) Fibrilar

κ-casein

(b) Polymeric

Latex particles

Modes of foam stabilization by polymeric surfactants

Natural polymers

Usually: combination of steric + electrostatic stabilization

Polymer-surfactant mixtures are often used!

Foam film stabilization by solid particles

Relatively thick foam films. The foams could be very stable against coarsening!

Difficult to produce: Slow adsorption ($D = kT/6\pi\eta R$) No Marangoni effect ($E_G = -(d\sigma/d\ln\Gamma) \approx \Gamma kT = kT/A_0$) Strong capillary attraction between particles

 \Rightarrow Creation of "weak" spots (free of particles) in the films!

Mixture of particles + surfactants (ice-cream, whipped cream, chocolate mousse, ...)

B. Foam films

Aims of presentation:

Information gained by studying foam films. Illustration of differences between surfactants.

CONTENTS

- **1. Properties of equilibrium foam films.**
- 2. Rate of thinning of foam films.
- 3. Methods for studying foam films.
- 4. Illustrative examples

1. Basic properties of equilibrium foam films.

1. Equilibrium film thickness

Pressure balance

$$\Pi(h_{EQ}) = P_A - P_L = P_C$$

2. Contact angle film-meniscus

 $\frac{Film \text{ tension}}{f(t)}$

Interaction energy

$$\sigma^{t} = \sigma \cos \theta; \ \sigma^{t} (h) = \sigma + f(h)/2$$

$$f(h) = \int_{h}^{\infty} \Pi(h) dh$$

$$f(h) = 2\sigma(\cos\theta - 1)$$

Transition zone film-meniscus

Open questions from the thermodynamic approach:

- Do we have a sharp kink in the shape?
- What does compensate the vertical projection of σ ?

Real profile

Local stress balance

Rate of thinning of foam films

Role of Marangoni effect

Driving force

$$P_C = P_A - P_L > 0$$

 $\frac{\text{Reynolds equation}}{\text{for film thinning}}$ $V_{\text{Re}} = -\frac{dh}{dt} = \frac{2(P_{\text{C}} - \Pi)h^3}{3\eta R^2}$

Limitations of Reynolds equation: Tangentially immobile surfaces Plane-parallel films The real films thin faster!

Rupture of foam films

Methods for studying foam films

1. Large foam films suspended on a glass frame

<u>White light – beautiful colors (light interference)</u>

Monochromatic light – dark and bright stripes (film thickness)

Film thickness

$$h = \frac{\lambda}{2\pi n} \left(k\pi + \arcsin \sqrt{\frac{I - I_{MIN}}{I_{MAX} - I_{MIN}}} \right)$$

 λ - light wavelength *n* - refractive index of solution *k* - order of interference <u>Measured</u> *h* (time), *h* (position)

2. Microscopic foam films in a capillary cell

3. Porous plate method

 $\boldsymbol{P}_{\mathsf{C}} = (\boldsymbol{P}_{\mathsf{A}} - \boldsymbol{P}_{\mathsf{L}}) = \Pi(\boldsymbol{h}_{\mathsf{EQ}})$

Disjoining pressure isotherm ∏↑ Film rupture

Measured:

- Equilibrium thickness, h_{EQ}(P_C)
- Disjoining pressure, **Π(h)**
- Critical pressure for film rupture, Π_{CR}

Illustrative examples

Anionic surfactant, SDS Speed: ×1

Polymeric surfactant, PVA Speed: ×4

Protein, Na caseinate Speed: ×8

*h*_{EQ} ≈ 120 nm τ_{DR} ≈ 300 sec

*h*_{EQ} ≈ 30 nm τ_{DR} ≈ 600 sec

No surfactant Speed: 1/4

Very rapid film thinning Film rupture at large thickness (no Marangoni effect)

C. Antifoams

antifoam effect of hydrophobic particles and oils

What is "antifoam effect"?

TECHNOLOGY

- Pulp and paper production
- Oil industry (non-aqueous foams)
- Fermentation
- Textile dying

CONSUMER PRODUCTS

- Powders for washing machines
- Paints
- Drugs

Aims of presentation:

Mechanisms of foam destruction by antifoams. Illustrative examples.

CONTENTS

- **1. Composition of typical antifoams.**
- 2. Mechanisms of foam destruction.
- 3. Examples of antifoam actions.

Composition of Typical Antifoams

1. Hydrophobic solid particles

- Silica (SiO₂)
- Polymeric particles

<u>2. Oil</u>

- Silicone oils (PDMS)
- Hydrocarbons (mineral oil, aliphatic oils)

3. Compound

Oil + particles

Silica particles

100 nm

Emulsified oil

30 µm

Compound globule

Mechanisms of antifoam action: Fast and Slow antifoams

Characteristic size- and time-scales in foam

Film rupture by solid particles: bridging-dewetting mechanism

Film rupture by oil-solid compounds: bridging-stretching mechanism

Film rupture after oil spreading

Optical observation of film rupture (fast antifoams)

Large foam film suspended on glass frame - expanding hole (high speed camera, 500 fps) Microscopic film initial stage of film rupture

The fast antifoams rupture the films almost immediately after film formation at thickness ~ 1 μ m

Optical observation of film rupture (fast antifoams)

Large foam film suspended on glass frame (high speed camera, 500 fps)

Slow antifoams: Oils drops trapped in Plateau channels

Slow Antifoams – the oil drops:

- Escape from the foam films without rupturing them
- Accumulate in the Plateau channels of the foam
- Break the foam films after entry in the Plateau channel

Slow antifoams -Entry in the Plateau borders

<u>Key factors</u>: (1) Critical pressure for drop entry (entry barrier) (2) Drop size

Foam film rupture by slow antifoam (silicone oil)

The spread oil ruptures the thin foam films probably by surfactant displacement

Enhanced foam stability by using Cosurfactants

Classification:

Types of antifoam and mechanisms of antifoam action

Antifoam composition	Type of action	Mode of foam destruction	Schematic presentation
Solid particles	Slow (fast)	Bridging-dewetting	
Oils	Slow	Spreading	
Oil-solid	Fast	Bridging-stretching Bridging-dewetting	

SINCERE THANKS

Dr. S. Tcholakova

Help in preparation of the presentation.

Miss M. Paraskova

Preparation of some of the figures.

Other colleagues

The Laboratory of Chemical Physics & Engineering Faculty of Chemistry, University of Sofia, Sofia, Bulgaria