Solid-like response

Linear viscoelasticity

Non linear elasticity

Laboratoire de Physique des Matériaux Divisés et des Interfaces

Princen model

Princen 1983

3D dry foams

	R G/T	∆G/G
Kelvin	0.50	0.5
Williams	0.49	0.5
Weaire-Phelan	0.54	0.04
Disordered monodisperse	0.51	0
Derjaguin estimation	0.8	0

Derjaguin 1933; Kraynik, Reinelt 1996, 2004

3D dry disordered polydisperse foams

Kraynik, Reinelt 2004

Effect of liquid content

Princen, Kiss 1986; Mason et al 1995; Saint-Jalmes, Durian 1999; Gopal, Durian 1999; Höhler, CA 2005; Kraynik, Reinelt 2004 Bolton, Weaire 1990

Does a linear regime exist ?

Weaire, Fortes 1994

DWS echoes

1000 Intensity autocorrelation function No shear G Modulus (Pa) 0.8 γ₀=0.1% γ₀=13% 0.6 멉 100 ча, \Box_{\Box} \Box 0.4 **G**" 0.2 10 Ω 0.3 0.5 0.1 0.2 0.4 0.001 0.01 0.1 0 strain amplitude time delay (s)

Gillette foam Age = 60 min Frequency = 10 Hz

Rheometry

Equivalence between temporal and frequency responses

Viscoelastic response

Dissipation at the film scale

- Fluid transport in films and borders
- Intrinsic surface viscosity of the interfaces

Dissipation at a mesoscopic scale "Soft Glassy Materials"

• Irreversible loss of elastic energy upon bubble rearrangements

Buzza, Lu, Cates, J Phys II 1995 Edwards, Wasan 1996

Sollich et al PRL 1997 Hébraud, Lequeux PRL 1998 **Coarsening is an intrinsic source of dynamics in foams**

▲ Local stress Time

A simple mesoscopic model of relaxation due to coarsening-induced rearrangements

Surface Evolver simulations S. Vincent-Bonnieu

Creep, DWS and DTS experiment

C-A, Höhler, Khidas 2004

Coarsening induced rearrangements are at the origin of the steady creep

$$J_{eo} \eta_o \cong \frac{1}{R V}$$

$$V \cong (3 d)^3$$

Foams and other solids can flow on long time scales

Interfacial relaxation

Scaling law for the relaxation time, independent of bubble size : $\tau_1 \approx \kappa / T$

$$\tau_1 \cong 3 - 5 \text{ s} \rightarrow \kappa \approx 0.05 - 0.15 \text{ kg s}^{-1}$$

Surfactants + Dodecanol + Polymer

Back to the frequency response

Evolution upon coarsening

Growth law of mean bubble diameter due to Laplace pressure differences

> í 1 h $\times 2 h$ + 4 h

ò 8 h

 $d^2 = d_0^2 + K (t-t_0)$

Mullins 1986

Scaling law for G*(ω , age)

 $G^*(\omega, t) = b(t) G^*(\omega a(t), t_o)$

C-A, Hoballah, Höhler 1998

Shear induced normal stresses

$$N_1 = \sigma_{11} - \sigma_{22}$$
$$N_2 = \sigma_{22} - \sigma_{33}$$

$$\begin{array}{c} 2 & \sigma_{22} \\ \sigma_{12} \\ \sigma_{3} \\ \sigma_{33} \end{array}$$

Stationary flow : Weissenberg effect

Labiausse

Elastic regime : Poynting effect 1909

 $N_1 = \sigma_{12} \gamma = G \gamma^2$

Poynting 1852-1914

Surface evolver simulations

 $N_1 \cong G \gamma^2 \qquad \qquad N_2 \cong -0.85 N_1$

Kraynik, Reinelt 2004

A nonlinear analytical constitutive law for foam

Application of a homogeneous affine strain :

Modified area a': $a'^2 = a^2 \mathbf{n}^T \mathbf{C}^{-1} \mathbf{n}$

Energy density:
$$W(\mathbf{C}) = \frac{Ta}{V} \sum_{j} \sqrt{\mathbf{n}_{j}^{T} \mathbf{C}^{-1} \mathbf{n}_{j}}$$

Surface tension T, sample volume V Right Cauchy Green tensor C

Express W in terms of the invariants of C, denoted I_c and II_c: $W = \frac{G}{14} ((I_c - 3) + 6(II_c - 3))$

Finger tensor B

$$\boldsymbol{\sigma} = -p \, \mathbf{I} + \frac{G}{7} \left(\mathbf{B} - 6 \, \mathbf{B}^{-1} \right) \quad \rightarrow \qquad N_1 = \sigma_{12} \, \gamma \qquad N_2 = -\frac{6}{7} N_1$$

Höhler, C-A, Labiausse 2004

Measuring N_1

Macosko 1994

Good agreement with Poynting's law for dry foams

AOK-N₂ $\phi = 97\%$

Coarsening releases part of the stresses trapped due to the strain history. => more isotropic structure