Interfacial dynamics

Interfacial dynamics = dynamic processes at fluid
interfaces upon their deformation
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Interfacial rheological properties: elasticity, viscosity, yield stress, ...

Relation between macroscopic and molecular levels of description?!

Aims of presentation:

» Basic concepts in interfacial dynamics.
* lllustrative examples.

A. Role of interfacial dynamics.

B. Interfacial rheology.

C. Foam-wall viscous friction.




A. Role of interfacial dynamics in foams -
two selected examples

1. Surface perturbations in foam rheoloqgy
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2. Surface stress in the process of foam drainage
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B. Interfacial rheology.

1. Phenomenoloqgical approach - shear deformation
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Surface shear elasticity
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The shear rheological properties are sensitive to
the molecular interactions in the adsorption layer.

More complex models (constitutive equations)

Visco-elastic (Kelvin)
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2.

Phenomenological approach

- dilatational deformation.
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The dilatational rheological properties are sensitive to both,

molecular interactions and adsorption kinetics

Apparent viscosity
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« Adsorption time, typs
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» Similarly for the molecule rearrangement in the monolayer, tg
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Coupling between bulk and surface flows

1. Balance of bulk and surface stress

Equal velocities Stress balance
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2. Surface mass balance for the surfactant
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Equations for determining
I'(x,t) and o(x,t)

Coupled set of equations for C(x,z), V,(X,z), I'(x), Vg

Very complex hydrodynamic problem!




Experimental methods for studying the
interfacial rheological properties

Shear mode Dilatational mode
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Continuous shear
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1. Continuous type of measurement (steady-state flow)
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For diffusion control,
steady-state is difficult to achieve




2. Stress-relaxation experiments

o Strain - Maxwell model
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3. Strain-relaxation experiments (creep flow)
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4. Oscillatory measurements (shear, dilatation)
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Example: Diffusion controlled adsorption- dilatation
(Lucassen, van den Tempel)
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Expected rheoloqgical response in various systems

System Schematics Note
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C. Friction between foam and solid wall

« Wall slip is usually significant (incl. rheo-experiments)

* Role of surface mobility of the bubbles.




Aims of the presentation:

 Approaches for studying foam-wall friction.
 |llustration of role of interfacial properties.

CONTENTS

1. Role of wall-slip in foam rheology.
2. Theoretical approach for description.

3. lllustrative experimental results.

Foam rheological properties

Constitutive rheological relation B ,
— *n

1, - yield stress (elastic origin) ©-0.0088 T=0

7, - shear rate [1/s] L

Herschel-Bulkley fluid (HB fluid)

O-0.9000 0<T<T,
Princen, 1985




Role of wall-slip in foam rheology
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The true shear rate in the foam, vy, is lower
in presence of wall-slip

Example: Effect of wall-slip on shear stress

Foam stabilised by 3 wt % Betaine, ® =90 %
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Theoretical approach to describe
wall-slip friction

Foam
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The film thickness increases with the increase of V,




Lubrication equation for bubble-wall friction
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Surface stress balance
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Important factors:
» Relative velocity, V,,
* Bubble size, Rg, and volume fraction, ®

e Liquid viscosity, p
« Surface mobility (surface elasticity and viscosity)

Two limiting cases are theoretically predicted

Tangentially immobile surface Tangentially mobile surface
(high surface modulus) (low surface modulus)
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Experimental results

effect of surface mobility on foam-wall friction
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Sheared bulk foam - effect of surface mobility
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Conclusions

Interfacial dynamic properties play a very important role in foam
dynamics (rheology, drainage, foam generation, ...)

Interfacial properties can be characterized by phenomenological
parameters (e.g., surface viscosity, elasticity, and yield stress)

These phenomenological parameters are governed by the
adsorbed surfactant species (incl. exchange with the solution)

Two limiting cases are often recognized:

e Tangentially immobile (alkylcarboxylates, proteins, synthetic
polymers, particles)

e Tangentially mobile (most synthetic surfactants)
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