Interfacial dynamics

Interfacial dynamics = dynamic processes at fluid interfaces upon their deformation

Interfacial rheological properties: elasticity, viscosity, yield stress, ...

Relation between macroscopic and molecular levels of description?!

Aims of presentation:

- Basic concepts in interfacial dynamics.
- Illustrative examples.

A. Role of interfacial dynamics.

B. Interfacial rheology.

C. Foam-wall viscous friction.
A. Role of interfacial dynamics in foams - two selected examples

1. Surface perturbations in foam rheology

![Diagram showing surface perturbations in foam rheology]

2. Surface stress in the process of foam drainage

![Diagram showing matching bulk and surface flows]

Viscous bulk stress
\[\tau_V = \mu \frac{dV_z}{dx} \]

Matching bulk and surface flows
\[V_S = V_Z \ (x = 0) \]
\[\tau_S = \tau_V \]
B. Interfacial rheology.

1. Phenomenological approach - shear deformation

Surface shear elasticity

\[\tau_S = E_S \alpha_S \]

Surface shear viscosity

\[\tau_S = \eta_S \frac{d\alpha_S}{dt} = \eta_S \dot{\alpha}_S \]

The shear rheological properties are sensitive to the molecular interactions in the adsorption layer.

More complex models (constitutive equations)

Visco-elastic (Kelvin)

\[\tau = E \alpha + \eta \dot{\alpha} \]

Visco-elastic (Maxwell)

\[\dot{\alpha} = \frac{\dot{\tau}}{E} + \frac{\tau}{\eta} \]

Visco-plastic (Bingham)

\[\tau = \tau_0 + \eta \dot{\alpha} \]

Shear thinning (power law)

\[\tau = k \dot{\alpha}^n \]
2. Phenomenological approach
- dilatational deformation.

Surface dilatational elasticity

\[\tau_d = E_d \alpha_d \quad \alpha_d = \frac{\delta A}{A_0} \]

For insoluble monolayers:

\[\Delta \sigma = E_G \alpha_d \Rightarrow E_d = E_G = \frac{d \sigma}{d \ln A} \]

The dilatational rheological properties are sensitive to both, molecular interactions and adsorption kinetics.

Surface dilatational viscosity

\[\tau_d = \eta_d \dot{\alpha}_d \quad \dot{\alpha}_d = \frac{d \alpha_d}{dt} = \frac{d (\ln A)}{dt} \]

Apparent viscosity

Characteristic times:
- Experimental time, \(t_{\text{EXP}} \)
- Adsorption time, \(t_{\text{ADS}} \)

\[\tau_d = \delta \sigma = \left(\frac{d \sigma}{d \Gamma} \right) \delta \Gamma = - \left(\frac{d \sigma}{d \Gamma} \right) \frac{\delta A_M}{A_M^2} = - \left(\frac{d \sigma}{d \ln \Gamma} \right) \delta \ln A_M \]

\[\approx E_G \left(\frac{t_{\text{ADS}}}{t_{\text{EXP}}} \right) \delta \ln A \approx (E_G t_{\text{ADS}}) \left(\frac{\delta \ln A}{t_{\text{EXP}}} \right) = \mu_{\text{APP}} \dot{\alpha}_d \]

- Similarly for the molecule rearrangement in the monolayer, \(t_R \)
1. Balance of bulk and surface stress

- **Equal velocities**
 \[V_S = V_B(z = z_S) \]

- **Stress balance**
 \[\tau_B = \tau_S \]

- **Bulk viscous stress**
 \[\tau_B = \mu \frac{\partial V_x}{\partial z} \approx \frac{V_0}{h} \]

- **Surface stress**
 \[\tau_S = -\frac{d\sigma}{dx} + \mu_S \frac{d^2u}{dx^2} \]

2. Surface mass balance for the surfactant

- **Equations for determining**
 \[\frac{\partial \Gamma}{\partial t} = -D_S \frac{\partial \Gamma}{\partial x} + \frac{\partial (V_S \Gamma)}{\partial x} + J_{\text{BULK}} \]

- **Equations**
 \[J_{\text{BULK}} = -D_B \left(\frac{\partial C}{\partial z} \right)_{z=z_S} \]

- **Coupled set of equations for**
 \[C(x,z), V_x(x,z), \Gamma(x), V_S \]

Very complex hydrodynamic problem!
Experimental methods for studying the interfacial rheological properties

Shear mode

- **Couette geometry**
- Expanding or oscillating drop

Dilatational mode

\[
\sigma(t) = (\sigma_{EQ} + \tau_D) = (\sigma_{EQ} + E_d \alpha_d + \eta_d \dot{\alpha}_d)
\]

Expanding or oscillating drop

\[
P_C = \frac{2\sigma}{R_d}
\]

1. **Continuous type of measurement (steady-state flow)**

Shear

\[
\tau_S = \tau_S(\dot{\alpha}_S)
\]

Dilatational

\[
d(\ln A)/dt = \text{const}
\]

For diffusion control, steady-state is difficult to achieve.
2. Stress-relaxation experiments

Maxwell model

\[\dot{\alpha} = \frac{\dot{\tau}}{E} + \frac{\tau}{\eta} \]

\[\tau(t) = \Delta \alpha E \exp\left(-\frac{t}{t_R}\right) \]

\[t_R = \frac{\eta}{E} \quad E \approx \frac{\Delta \tau}{\Delta \alpha} \]

The relaxation is not exponential for diffusion controlled adsorption

\[\Delta \sigma(t) \propto \frac{1}{\sqrt{t}} \]

3. Strain-relaxation experiments (creep flow)

Kelvin model

\[\alpha(t) = \frac{\Delta \tau}{E} \left[1 - \exp\left(-t/t_R\right)\right] \]
4. Oscillatory measurements (shear, dilatation)

Kelvin model

\[
\tau = \tau_{EL} + \tau_V = E\alpha + \eta \frac{d\alpha}{dt}
\]

\[
\alpha = A_\alpha \sin(\omega t) \Rightarrow \dot{\alpha} = A_\alpha \omega \cos(\omega t)
\]

\[
\tau = A_\tau \left[E \sin(\omega t) + \eta \omega \cos(\omega t) \right] = A_\tau \left[\sin(\omega t + \phi) \right]
\]

\[
\frac{A_\tau}{A_\alpha} = \sqrt{E^2 + (\eta \omega)^2}
\]

Surface modulus

\[
\sin \phi = \frac{\eta \omega}{\sqrt{E^2 + (\eta \omega)^2}}
\]

Example: Diffusion controlled adsorption- dilatation

(Lucassen, van den Tempel)

Elasticity

\[
E(\omega) = E_G \frac{\omega_D + \sqrt{\omega_D^2/2}}{\omega_D + \sqrt{2\omega_D + 1}}
\]

\[
\omega_D = \frac{\omega}{D \left(\frac{dr}{dC}\right)^2}
\]

Apparent viscosity

\[
\eta(\omega) = \left(\frac{E_G}{\omega}\right) \left(\frac{\sqrt{\omega_D^2/2}}{\omega_D + \sqrt{2\omega_D + 1}}\right)
\]

Insoluble monolayers or fast oscillations:

\(\omega_D \rightarrow \infty \Rightarrow E = E_G; \eta = 0\)

Slow oscillations:

\(\omega_D \rightarrow 0 \Rightarrow E(\omega) \approx E_G \omega_D \rightarrow 0; \eta \rightarrow E_G \frac{\sqrt{\omega_D^2/2}}{\omega} \rightarrow \infty; \omega \eta(\omega) \rightarrow 0\)
Expected rheological response in various systems

<table>
<thead>
<tr>
<th>System</th>
<th>Schematics</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low molecular mass surfactants</td>
<td></td>
<td>Adsorption</td>
</tr>
<tr>
<td>Synthetic polymers</td>
<td></td>
<td>Visco-elastic, Shear thinning</td>
</tr>
<tr>
<td>Globular proteins</td>
<td></td>
<td>+ Yield stress, Time dependence</td>
</tr>
<tr>
<td>Solid particles</td>
<td></td>
<td>Plastic, Slow adsorption</td>
</tr>
</tbody>
</table>

C. Friction between foam and solid wall

- Wall slip is usually significant (incl. rheo-experiments)
- Role of surface mobility of the bubbles.
Aims of the presentation:

- Approaches for studying foam-wall friction.
- Illustration of role of interfacial properties.

CONTENTS

1. Role of wall-slip in foam rheology.
2. Theoretical approach for description.
3. Illustrative experimental results.

Foam rheological properties

Constitutive rheological relation

\[\tau = \tau_0 + k \dot{\gamma}_F^n \]

\(\tau_0 \) - yield stress (elastic origin)
\(\dot{\gamma}_F \) - shear rate [1/s]
Herschel-Bulkley fluid (HB fluid)

Princen, 1985
Role of wall-slip in foam rheology

\[\gamma_F = \gamma_{\text{APP}} - \frac{V_W}{d} \]

The true shear rate in the foam, \(\gamma_F \), is lower in presence of wall-slip

Example: Effect of wall-slip on shear stress

Foam stabilised by 3 wt % Betaine, \(\Phi = 90 \% \)
Theoretical approach to describe wall-slip friction

Friction Force Bubble-Wall

\[F_{FR} = \mu \left(\frac{\partial V_x}{\partial z} \right)_{z=0} \int_{\text{Contact zone}} dA \]

Shape of the dynamic wetting film formed between bubble and solid wall

The film thickness increases with the increase of \(V_0 \)
Lubrication equation for bubble-wall friction

\[\frac{dP}{dx} = \mu \frac{\partial^2 V_x}{\partial z^2} \]

Surface stress balance

\[\mu \left(\frac{\partial V_x}{\partial z} \right)_{z=b} = -\frac{d\sigma}{dx} + \mu_s \frac{d^2 u}{dx^2} \]

Important factors:
- Relative velocity, \(V_W \)
- Bubble size, \(R_B \), and volume fraction, \(\Phi \)
- Liquid viscosity, \(\mu \)
- Surface mobility (surface elasticity and viscosity)

Two limiting cases are theoretically predicted

Tangentially immobile surface (high surface modulus)

\[\tau_W \propto \left(\frac{\sigma}{R_{32}} \right) Ca^{1/2} \]

\[Ca = \left(\frac{\mu V_W}{\sigma} \right) \]

Tangentially mobile surface (low surface modulus)

\[\tau_W \propto \left(\frac{\sigma}{R_{32}} \right) Ca^{2/3} \]
Experimental results

Effect of surface mobility on foam-wall friction

Dimensionless shear rate, Ca

Dimensionless Stress

$\tau W = kV_0^n$

$n = 1/2$

$n = 2/3$

Soap

Synthetic surfactants

Scaling of the data with solution viscosity

$$\left(\frac{R_{32}}{\sigma} \tau W\right) \propto Ca^{2/3} \quad Ca = \left(\frac{\mu V_W}{\sigma}\right)$$

1 wt % Na Laurate
2 wt % K Cocoyleglycinate
3 wt % Betaine
0 to 60 % Glycerol
Sheared bulk foam - effect of surface mobility

\[\tau_F = \tau_0 + k \dot{\gamma}^n \]

\[Ca_F = \left(\frac{\mu \dot{\gamma} R}{\sigma} \right) \]

Conclusions

Interfacial dynamic properties play a very important role in foam dynamics (rheology, drainage, foam generation, ...)

Interfacial properties can be characterized by *phenomenological parameters* (e.g., surface viscosity, elasticity, and yield stress)

These phenomenological parameters are governed by the *adsorbed surfactant species* (incl. exchange with the solution)

Two limiting cases are often recognized:
- Tangentially immobile (alkylcarboxylates, proteins, synthetic polymers, particles)
- Tangentially mobile (most synthetic surfactants)
SINCERE THANKS

Dr. S. Tcholakova -
Help in preparation of the presentation.

Miss M. Paraskova -
Preparation of some of the figures.

Other colleagues from:
Laboratory of Chemical Physics & Engineering
Faculty of Chemistry, University of Sofia, Sofia, Bulgaria